Research > Microbe > Viruses > Norovirus


Common Names for Hypochlorous Acid Solutions


  • Electrolytically Generated Hypochlorous Acid
  • Neutral Electrolyzed Water (NEW)
  • Electrolyzed Oxidizing Water (EOW)
  • Electro-chemically Activated Water (ECA)
  • Super-oxidized water (SOW)


Results: 4 published articles


Journal Cover

Microbe(s): Murine Norovirus surrogate for Human Norovirus


The EcoloxTech 240 system was used to generate a 50 ppm electrolyzed water solution of hypochlorous acid at pH 8 (25% solution of HOCl). Ceramic tile which had been innoculated with Murine Norovirus was treated with the hypochlorous acid solution for a contact time of 1 minute resulting in a 4-log reduction of Murine Norovirus.



Journal Cover

Microbe(s): Murine Norovirus surrogate for Human Norovirus


The EcoloxTech 240 system was used to generate a 50 ppm electrolyzed water solution of hypochlorous acid at pH 5 (99% solution of HOCl). Ceramic tile which had been innoculated with Murine Norovirus was treated with the hypochlorous acid solution for a contact time of 1 minute resulting in a 5-log reduction of Murine Norovirus.



Journal Cover

Microbe(s): MNV-1, Norovirus, HAV, Hepatitis A


The ability of acidic electrolyzed oxidizing water (AEO) and neutral electrolyzed oxidizing water (NEO) to inactivate the murine norovirus (MNV-1) surrogate for human norovirus and hepatitis A virus (HAV) in suspension and on stainless steel coupons in the presence of organic matter was investigated. Viruses containing tryptone (0.0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0) were mixed with AEO and NEO for 1 min. In addition, stainless steel coupons containing MNV-1 with or without organic matter were treated with AEO or NEO for 3, 5, and 10 min. AEO was proven effective and generally killed more MNV-1 and HAV in suspension than NEO. Depending on the EO water generator, free chlorine concentrations are required to inactivate MNV-1 and HAV by 3-log PFU/mL or greater ranged from 30 mg/L to 40 mg/L after a 1 min contact time. The virucidal effect increased with increasing free chlorine concentration and decreased with increasing tryptone concentration in suspension. Both AEO and NEO at 70100 mg/L of free chlorine concentration significantly reduced MNV-1 on coupons in the absence of organic matter. However, there was no significant difference between these two treatments in the presence of organic matter. In addition, the efficacy of these two EO waters on stainless steel coupons increased with the increasing treatment time. Results indicated that AEO and NEO can reduce MNV-1 and HAV in suspension. However, higher free chlorine concentrations and longer treatment times may be necessary to reduce viruses on contact surfaces or in the presence of organic matter.



Journal Cover

Microbe(s): Viruses, Norovirus


Noroviruses (NVs) are the most frequent cause of outbreaks of gastroenteritis in common settings, with surface-mediated transfer via contact with fecally contaminated surfaces implicated in exposure. NVs are environmentally stable and persistent and have a low infectious dose. Several disinfectants have been evaluated for efficacy to control viruses on surfaces, but the toxicity and potential damage to treated materials limits their applicability. Sterilox hypochlorous acid (HOCl) solution (HAS) has shown broad-spectrum antimicrobial activity while being suitable for general use. The objectives of this study were to evaluate the efficacy of HAS to reduce NV both in aqueous suspensions and on inanimate carriers. HOCl was further tested as a fog to decontaminate large spaces. HOCl effectiveness was evaluated using nonculturable human NV measured by reverse transcriptase PCR (RT-PCR) and two surrogate viruses, coliphage MS2 and murine NV, that were detected by both infectivity and RT-PCR. Exposing virus-contaminated carriers of ceramic tile (porous) and stainless steel (nonporous) to 20 to 200 ppm of HOCl solution resulted in 99.9% ( 3 log10) reductions of both infectivity and RNA titers of tested viruses within 10 min of exposure time. HOCl fogged in a confined space reduced the infectivity and RNA titers of NV, murine NV, and MS2 on these carriers by at least 99.9% (3 log10), regardless of carrier location and orientation. We conclude that HOCl solution as a liquid or fog is likely to be effective in disinfecting common settings to reduce NV exposures and thereby control virus spread via fomites.



 EcoloxTech
   Learn more about HOCl