Research > Industry > Health > Application: Biofilm


Common Names for Hypochlorous Acid Solutions


  • Electrolytically Generated Hypochlorous Acid
  • Neutral Electrolyzed Water (NEW)
  • Electrolyzed Oxidizing Water (EOW)
  • Electro-chemically Activated Water (ECA)
  • Super-oxidized water (SOW)


Results: 4 published articles


Journal Cover

Microbe(s): Escherichia coli, Porphyromonas gingivalis, Enterococcus faecalis, Streptococcus sanguinis


Chemotherapeutic agents have been used as an adjunct to mechanical debridement for peri-implantitis treatment. The present in vitro study evaluated and compared the effectiveness of hypochlorous acid (HOCl), sodium hypochlorite (NaOCl), and chlorhexidine (CHX) at eliminating Gram-negative (E. coli and P. gingivalis) and Gram-positive (E. faecalis and S. sanguinis) bacteria. The effect of irrigating volume and exposure time on the antimicrobial efficacy of HOCl was evaluated, and a durability analysis was completed. Live/dead staining, morphology observation, alamarBlue assay, and lipopolysacLPS) detection were examined on grit-blasted and biofilm-contaminated titanium alloy discs after treatment with the three chemotherapeutic agents. The results indicated that HOCl exhibited better antibacterial efficacy with increasing irrigating volumes. HOCl achieved greater antibacterial efficacy as treatment time was increased. A decrease in antimicrobial effectiveness was observed when HOCl was unsealed and left in contact with the air. All the irrigants showed antibacterial activity and killed the majority of bacteria on the titanium alloy surfaces of biofilm-contaminated implants. Moreover, HOCl significantly lowered the LPS concentration of P. gingivalis when compared with NaOCl and CHX. Thus, a HOCl antiseptic may be effective for cleaning biofilm-contaminated implant surfaces.



Journal Cover

Microbe(s): Methicillin-resistant Staphylococcus aureus, MRSA


OBJECTIVE: Biofilms represent a key challenge in the treatment of chronic wounds, as they are among the main reasons for delays in chronic wound healing. This in vitro study was aimed at evaluating the activity of a new acid-oxidizing solution (AOS) on biofilm formation. Acid-oxidizing solution contains free chlorine species with stabilized hypochlorous acid in high concentration (> 95) and is RP2). Different approaches were used to assess the prevention and eradication of methicillin-resistant Staphyloccocus aureus biofilm by the study products. Xylitol and chlorhexidine were used as positive controls. The activity of the study products on the biofilm structure was evaluated analyzing the ultrastructural modification by scanning electron microscopy, while skin compatibility was assessed on noncolonized tissues measuring the metabolic activity of the cells. RESULTS: In all experiments, AOS showed to be active on the biofilm matrix, modifying its structure and allowing bacterial release from the matrix. In all experiments, no cytotoxicity was observed in the tissues treated with the product suggesting a good compatibility of AOS with skin tissues. Reference product 1 affected the biofilm, suggesting a disruption effect RP2 was slightly less active than AOS in modifying the biofilm structure. CONCLUSION: Treatment with AOS affects biofilm by modifying its structure and therefore facilitating local bacteria accessibility to bactericidal agents, with consequent potential clinical benefits in the treatment of chronic wounds.



Journal Cover

Microbe(s): Staphylococcus epidermidis


The purpose of this study was to investigate the mechanism by which a direct electrical current reduced the viability of Staphylococcus epidermidis biofilms in conjunction with ciprofloxacin at physiologic saline conditions meant to approximate those in an infected artificial joint. Biofilms grown in CDC biofilm reactors were exposed to current for 24 hours in 1/10th strength tryptic soy broth containing 9 g/L total NaCl. Dose-dependent log reductions up to 6.7 log10 CFU/cm2 were observed with the application of direct current at all four levels (0.7 to 1.8 mA/cm2) both in the presence and absence of ciprofloxacin. There were no significant differences in log reductions for wells with ciprofloxacin compared to those without at the same current levels. When current exposures were repeated without biofilm or organics in the medium, significant generation of free chlorine was measured. Free chlorine doses equivalent to the 24 hour endpoint concentration for each current level were shown to mimic killing achieved by current application. Current exposure (1.8 mA/cm2) in medium lacking chloride and amended with sulfate, nitrate, or phosphate as alternative electrolytes produced diminished kills of 3, 2, and 0 log reduction, respectively. Direct current also killed Pseudomonas aeruginosa biofilms when NaCl was present. Together these results indicate that electrolysis reactions generating hypochlorous acid from chloride are likely a main contributor to the efficacy of direct current application. A physiologically relevant NaCl concentration is thus a critical parameter in experimental design if direct current is to be investigated for in vivo medical applications.



Journal Cover

Microbe(s): Staphylococcus aureus


Staphylococcus aureus is a major pathogen. It can form biofilm on the surfaces of medical devices and food equipment, which makes it more difficult to eradicate. To develop a novel method to eradicate S. aureus biofilm, the effects of electrolyzed water on removing and killing S. aureus biofilm were investigated in this study. By using a biofilm biomass assay with safranin staining and visualization of biofilm architecture with scanning electron microscopy, it was shown that basic electrolyzed water (BEW) could effectively remove established biofilm. The pH of electrolyzed water affected removal efficacy. Using a biofilm viability assay with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide staining, acidic electrolyzed water (AEW) efficiently killed biofilm-imbedded S. aureus. The available chlorine in AEW may be a main contributing factor for bactericidal activity. Additionally, BEW had a removal efficacy for S. aureus biofilm equivalent to 2% NaOH, and AEW had a bactericidal capability for S. aureus in biofilm equivalent to 2% HCl. These data suggested that AEW and BEW could be applied as a bactericide and removing agent for S. aureus in biofilm, respectively.