Research > Industry > Food > Application: All


See our COVID-19 virus research - CLICK HERE


Common Names for Hypochlorous Acid Solutions


  • Electrolytically Generated Hypochlorous Acid
  • Neutral Electrolyzed Water (NEW)
  • Electrolyzed Oxidizing Water (EOW)
  • Electro-chemically Activated Water (ECA)
  • Super-oxidized water (SOW)


Results: 216 published articles


Journal Cover

Microbe(s): Murine Norovirus surrogate for Human Norovirus


The EcoloxTech 240 system was used to generate a 50 ppm electrolyzed water solution of hypochlorous acid at pH 8 (25% solution of HOCl). Ceramic tile which had been innoculated with Murine Norovirus was treated with the hypochlorous acid solution for a contact time of 1 minute resulting in a 4-log reduction of Murine Norovirus.



Journal Cover

Microbe(s): Murine Norovirus surrogate for Human Norovirus


The EcoloxTech 240 system was used to generate a 50 ppm electrolyzed water solution of hypochlorous acid at pH 5 (99% solution of HOCl). Ceramic tile which had been innoculated with Murine Norovirus was treated with the hypochlorous acid solution for a contact time of 1 minute resulting in a 5-log reduction of Murine Norovirus.



Journal Cover

Microbe(s): Listeria monocytogenes, Escherichia coli, Vibrio parahaemolyticus


Electrolysed oxidising water (E.O. water) is produced by electrolysis of sodium chloride to yield primarily chlorine based oxidising products. At neutral pH this results in hypochlorous acid in the un-protonated form which has the greatest oxidising potential and ability to penetrate microbial cell walls to disrupt the cell membranes. E.O. water has been shown to be an effective method to reduce microbial contamination on food processing surfaces. The efficacy of E.O. water against pathogenic bacteria such as Listeria monocytogenes, Escherichia coli and Vibrio parahaemolyticus has also been extensively confirmed in growth studies of bacteria in culture where the sanitising agent can have direct contact with the bacteria. However it can only lower, but not eliminate, bacteria on processed seafoods. More research is required to understand and optimise the impacts of E.O. pre-treatment sanitation processes on subsequent microbial growth, shelf life, sensory and safety outcomes for packaged seafood products.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Listeria monocytogenes


The effects of low-concentration electrolysed water (LcEW) (4 mg/L free available chlorine) combined with mild heat on the safety and quality of fresh organic broccoli (Brassica oleracea) were evaluated. Treatment with LcEW combined with mild heat (50 C) achieved the highest reduction in naturally occurring microorganisms and pathogens, including inoculated Escherichia coli O157:H7 and Listeria monocytogenes (P < 0.05). In terms of the antioxidant content of the treated broccoli, the total phenolic levels and ferric reducing antioxidant power remained unchanged however, the oxygen radical absorbance capacity of the treated broccoli was higher than that of the untreated control. In addition, mild heat treatment resulted in an increase in firmness. The increased firmness was attributed to changes in the pectin structure, including the assembly and dynamics of pectin. The results revealed that mild heat induced an antiparallel orientation and spontaneous aggregation of the pectin chains. This study demonstrated that LcEW combined with mild heat treatment was effective to reduce microbial counts on fresh organic broccoli without compromising the product quality.



Journal Cover

Microbe(s): Escherichia coli ATCC 25922, Pichia pastoris GS115, Aureobasidium pullulans


The sanitising effect of low concentration neutralised electrolysed water (LCNEW, pH: 7.0, free available chlorine (FAC): 4 mg/L) combined with ultrasound (37 kHz, 80 W) on food contact surface was evaluated. Stainless steel coupon was chosen as attachment surface for Escherichia coli ATCC 25922, Pichia pastoris GS115 and Aureobasidium pullulans 2012, representing bacteria, yeast and mold, respectively. The results showed that although LCNEW itself could effectively reduce survival population of E. coli ATCC 25922, P. pastoris GS115 and low concentration A. pullulans 2012 in planktonic status, LCNEW combined with ultrasound showed more sanitising efficacy for air-dried cells on coupons, with swift ificantly reduced the survival cells both on coupons and in suspension for all three strains. The results suggest that LCNEW combined with ultrasound is a promising approach to sanitise food equipment.



Journal Cover

Microbe(s): Pseudomonas spp.,Shewanella spp.


The bacterial species and specific spoilage organisms associated with the Southern Australian King George Whiting (KGW) and Tasmanian Atlantic Salmon (TAS), and the efficacy of a HOCl-containing water-based sanitization product (Electro-Chemically Activated Solution, by ECAS4) in extending the shelf life of KGW and TAS fillets were evaluated. Fillets were washed with an ECAS4 solution containing either 45 ppm or 150 ppm of free chlorine and bacterial species enumerated on out many of the disadvantages of currently approved biocides.



Journal Cover

Microbe(s): Total Microbial Count


Squid is considered as a healthy food by consumers becaof its high nutritive value. However, it is easily decay caused by microbial contamination. This study aimed to investigate the effect of slightly acidic electrolyzed water ice (SAEW-ice) on preservation of squid. Five groups (untreated with ice (A), squid placed on the tap water (TW) ice (B) or SAEW ice (C), squid placed in the TW ice layers (D) or SAEW ice layers (E)) were conducted to evaluate the changes of sensory properties, microbial loads, pH value, peroxide value (POV), thiobarbituric acid (TBA) and total volatile basic nitrogen (TVBN) contents during the shelf life tests. The results showed that SAEW-ice was more efficient at maintaining the squid quality during storage than TW-ice. The total bacterial counts were significantly reduced by 1.46 0.10 log10 CFU/g treated by SAEW-ice and maintained relatively slow microbial growth during storage. It was also observed that SAEW-ice treatment delayed the appearance of browning and softening. Furthermore, SAEW-ice treatment also inhibited the increase of POV and maintained relatively low TBA and TVBN contents. These data indicated that SAEW-ice had the potential to ensure the microbial safety and control the quality deterioration of squid during storage, which could be a new approach worthy of further investigation.



Journal Cover

Microbe(s): Listeria monocytogenes


Time to detection experiments (TTD) based on turbidometry using an automatic Bioscreen C is a useful and straightforward method for estimating microbial growth parameters (lag time (), growth rate () and work to be done (h0)) at constant temperature. This study investigated the effects of slightly acidic electrolyzed water (SAEW) and heat treatment on Listeria monocytogenes growth at different recovery temperatures (10 C, 15 C, 25 C, and 30 C). Similar surviving and sublethally injured L. monocytogenes populations were obtained by heat treatment (55 C for 10 min) and SAEW treatment (available chlorine concentration of 30 mg/l and ratio of bacteria against SAEW of 8:2 for 30 s). In these experimental conditions, stresses had greater impact on the and h0 parameter in comparison with recovery temperature while there was no great change in growth rate under isothermal conditions. Larger values and h0 parameters were observed in sublethal-heat injured L. monocytogenes (the maximum and h0 parameters are 30.199 h and 1.6492) as compared to SAEW groups (the maximum and h0 parameters are 22.634 h and 1.4396). The sensitivity analysis of SAEW and heat treatments on h0 parameter indicated that SAEW treatment showed a higher influence. The collinearity diagnostics of independent variables recovery temperature (T), , for dependent variable (h0 parameter) demonstrated that T, and had strong collinearity. In addition, the established secondary models in this study have good performances on predicting the effect of recovery temperature on bacterial growth parameters.



Journal Cover

Microbe(s): Total Microbial Count


Electrolyzed water (EW) is known by its bactericidal efficacy and capability to oxidize organic matter. The present research evaluated the efficacy of recently developed electrolytic cells able to generate higher concentration of reactive oxygen species using lower power and salt concentration than conventional cells. This study tested the inactivation of Escherichia coli O157:H7, the organic matter depletion and trihalomethane (THM) generation by EW in process wash water under dynamic conditions. To achieve this, clean tap water was continuously added up to 60 min with artificial process water with high chemical oxygen demand (COD) inoculated with E. coli O157:H7, in experiments performed in a pilot plant that recirculated water through one electrolytic cell. Plate counts of E. coli O157:H7, COD, THMs, free, combined and total chlorine, pH, temperature and oxidation-reduction potential were determined. Results indicate that the novel electrolysis system combined with minimal addition of NaCl (0.05) was able to suppress E. coli O157:H7 population build-up and decreased the COD accumulation in the process wash water. THM levels in the water were relatively high but its concentration in the washed product was marginal. Highly effective electrolysis has been proven to reduce the occurrence of foodborne diseases associated to cross-contamination in produce washers without having an accumulation of THMs in the washed product.



Journal Cover

Microbe(s): Colletotrichum fructicola


Neutral electrolyzed water (NEW: pH 6.57.5) applied through an overhead irrigation system was evaluated for control of strawberry anthracnose caused by Colletotrichum fructicola. Conidia of the pathogen were completely killed by a 10-s exposure to 10.0 mg/L of available chlorine in the NEW. Disease suppression was significantly higher using the NEW treatment through overhead irrigation, either alone or combined with fungicides, than using conventional fungicides. Plants had no visible phytotoxicity after the NEW treatment, even when combined with fungicides. Thus, the NEW treatment was effective at controlling anthracnose caused by C. fructicola.



Journal Cover

Microbe(s): Bacillus subtilis spores, Bacillus cereus spores


Spores of some Bacillus species are responsible for food spoilage and foodborne disease. These spores are highly resistant to various interventions and cooking processes. In this study, the sporicidal efficacy of acidic electrolyzed oxidizing (EO) water (AEW) and slightly acidic EO water (SAEW) with available chlorine concentration (ACC) of 40, 60, 80, 100, and 120 mg/L and treatment time for 1, 2, 3, 4, 5, and 6 min were tested on Bacillus subtilis and Bacillus cereus spores in suspension and on carrier with or without organics. The reduction of spore significantly increased with increasing ACC and treatment time (P < 0.05). Nondetectable level of B. cereus spore in suspension occurred within 2 min after exposure to both EO waters containing 120 mg/L ACC, while only SAEW at 120 mg/L and 2 min treatment achieved >6 log reductions of B. subtilis spore. Both types of EO water with ACC of 60 mg/L and 6 min treatment achieved a reduction of B. subtilis and B. cereus spores to nondetectable level. EO water with ACC of 80 mg/L and treatment time of 3 min on carrier test without organics addition resulted in reductions of B. subtilis spore to nondetectable level. But, addition of 0.3 organics on carrier decreased the inactivation effect of EO water. This study indicated that EO water was highly effective in inactivation of B. subtilis and B. cereus spores in suspension or on carrier, and therefore, rendered it as a promising disinfectant to be applied in food industry.



Journal Cover

Microbe(s): Escherichia coli O104:H4, Listeria monocytogenes, Aeromonas hydrophila, Vibrio parahaemolyticus, Campylobacter jejuni


The effect of acidic electrolyzed water (AEW) on inactivating Escherichia coli O104:H4, Listeria monocytogenes, Aeromonas hyrol possible unhygienic practices during production and processing of shellfish without apparent changes in the quality of the shellfish.



Journal Cover

Microbe(s): Vibrio parahaemolyticus


Acidic electrolyzed water (AEW), a novel non-thermal sterilization technology, is widely used in the food industry. In this study, we firstly investigated the effect of AEW as a new pressure transmitting medium for high hydrostatic pressure (AEW-HHP) processing on microorganisms inactivation on shelled fresh shrimp. The optimal conditions of AEW-HHP for Vibrio parahaemolyticus inactivation on sterile shelled fresh shrimp were obtained using response surface methodology: NaCl concentration to electrolysis 1.5 g/L, treatment pressure 400 MPa, treatment time 10 min. Under the optimal conditions mentioned above, AEW dramatically enhanced the efficiency of HHP for inactivating V. parahaemolyticus and Listeria monocytogenes on artificially contaminated shelled fresh shrimp, and the log reductions were up to 6.08 and 5.71 log10 CFU/g respectively, while the common HHP could only inactivate the two pathogens up to 4.74 and 4.31 log10 CFU/g respectively. Meanwhile, scanning electron microscopy (SEM) showed the same phenomenon. For the naturally contaminated shelled fresh shrimp, AEW-HHP could also significantly reduce the micro flora when examined using plate count and PCR-DGGE. There were also no significant changes, histologically, in the muscle tissues of shrimps undergoing the AEW-HHP treatment. In summary, using AEW as a new transmitting medium for HHP processing is an innovative non thermal technology for improving the food safety of shrimp and other aquatic products.



Journal Cover

Microbe(s): Listeria monocytogenes


Listeria monocytogenes contamination in ready-to-eat (RTE) fish products, in particular in cold-smoked salmon is an important food safety concern. This study evaluated the antimicrobial activity of electrolyzed oxidizing (EO) water as a pretreatment method during the process of cold-smoked salmon to inactivate L. monocytogenes. In addition, the effect of EO water treatment on the sensory and textural quality of the final product was also evaluated. Raw Atlantic salmon (Salmo salar) fillets were inoculated with L. monocytogenes (with an approximately cell number of 6 105 CFU/g L. monocytogenes ATCC 19114) and treated with EO water at three different temperatures (20, 30, and 40 C) and at three different exposure time of 2, 6, and 10 min before the cold-smoking process. A combination of EO water and a mild temperature (40 C) had reduced L. monocytogenes populations by 2.85 log10 CFU/g. The sensory as evaluated by a consumer panel (N = 71) and texture, which was measured by texture analysis showed no significant changes between EO and mild temperature treated samples and the control.



Journal Cover

Microbe(s): All


Electrolyzed water (EW) has gained immense popularity over the last few decades as a novel broad-spectrum sanitizer. EW can be produced using tap water with table salt as the singular chemical additive. The application of EW is a sustainable and green concept and has several advantages over traditional cleaning systems including cost effectiveness, ease of application, effective disinfection, on-the-spot production, and safety for human beings and the environment. These features make it an appropriate sanitizing and cleaning system for in high-risk settings such as in hospitals and other healthcare facilities as well as in food processing environments. EW also has the potential for in educational building, offices, and entertainment venues. However, there have been a number of issues related to the of EW in various sectors including limited knowledge on the sanitizing mechanism. AEW, in particular, has shown limited efficacy on utensils, food products, and surfaces owing to various factors, the most important of which include the type of surface, presence of organic matter, and type of tape water used. The present review article highlights recent developments and offers new perspectives related to the of EW in various areas, with particular focus on the food industry.



Journal Cover

Microbe(s): Staphylococcus aureus


Slightly acidic electrolyzed water (SAEW), considered as a broad-spectrum and high-performance bactericide are increasingly applied in the food industry. However, its disinfection mechanism has not been completely elucidated. This study aims to examine the disinfection efficacy and mechanism of SAEW on Staphylococcus aureus, compared with that of sodium hypochlorite (NaClO) and hydrochloric acid (HCl). SAEW treatment significantly reduced S. aureus by 5.8 log CFU/mL in 1 min, while 3.26 and 2.73 log reductions were obtained with NaClO and HCl treatments, respectively. A series of biological changes including intracellular potassium leakage, TTC-dehydrogenase relative activity and bacterial ultrastructure destruction were studied following disinfection treatment of S. aureus. The results showed that SAEW decreased the relative activity of TTC-dehydrogenase by 65.84%. Comparing intracellular potassium leakage, the SAEW treatment caused a greater percent of protein leakage (108.34%) than the NaClO (18.75%) or HCl (0.84%) treatments. These results demonstrated the potent impact SAEW had on the permeability of cell membranes. In addition, the ranking of partly agglutinated cellular inclusion formation was HCl > SAEW > NaClO. It appeared that HCl, along with its low pH value, are responsible for most of the cytoplasmic disruptions. Overall, this study demonstrated that the disinfection mechanism of SAEW was disrupting the permeability of cell membrane and the cytoplasmic ultrastructures in S. aureus cells.



Journal Cover

Microbe(s): Bacillus cereus


Slightly acid electrolyzed water (SAcEW) and ultrasound (US) treatment have emerged as an environmental-friendly antimicrobial agent. However, SAcEW treatment alone shows low antimicrobial efficiency. Therefore, the aim of this study was to develop a hurdle approach that combined SAcEW and US to improve the antimicrobial effect against Bacillus cereus as well as inhibition of the growth on potato. US treatment under different conditions of dip times, acoustic energy densities (AED) and temperatures were conducted to obtain the optimal condition. Our findings demonstrate that 3 min of US with 400 W/L of AED at 40 C treatment (US 40 C) significantly (p 0.05) reduced B. cereus population by 2.3 0.1 log CFU/g with minimal change in the color of potato. In addition, 3 min of SAcEW (pH, 5.35.5 ORP, 958981 mV ACC, 2830 mg/L) simultaneous with US40 C treatment (SAcEW US40 C) an approximately 3.0 log CFU/g reduction in B. cereus. Furthermore, SAcEW US40 C treatment efficiently extended lag time of B. cereus by 0.210.5 hrs, reduced that of specific growth rate by 0.010.23 log CFU/h during storage at different temperatures from 5 to 35 C. Therefore, this combined hurdle technology is capable of improving microbial safety of potato during storage and distribution.



Journal Cover

Microbe(s): Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella sp.


Electrolyzed water generators are readily available in the food industry as a renewable source of hypochlorous acid that eliminates the need for workers to handle hazardous hypochlorite concentrates. We applied electrolyzed water (EW) directly to multi-strain cocktails of Listeria monocytogenes, E. coli O157:H7, and Salmonella sp. at 250 ppm free available chlorine (FAC) and achieved greater than 6-log reductions in 2 min. Lower EW values were examined as antimicrobial interventions for fresh meat (beef carcasses), processed meats (frankfurters), and food contact surfaces (slicing blades). Little or no reduction relative to controls was observed when generic E. coli-inoculated beef carcasses or L. monocytogenes-inoculated frankfurters were showered with EW. Spray application of EW (25 and 250-ppm FAC) onto L. monocytogenes-inoculated slicing blades showed that greater reductions were obtained with clean (3.6 and 5.7-log reduction) vs. dirty (0.6 and 3.3-log reduction) slicing blades, respectively. Trials with L. monocytogenes-inoculated protein-EW solutions demonstrated that protein content as low as 0.1% is capable of eliminating FAC, reducing antimicrobial activity against L. monocytogenes. EW appears better positioned as a surface sanitizer with minimal organic material that can otherwise act as an effective reducing agent to the oxidizing solution rendering it ineffective.



Journal Cover

Microbe(s): Listeria monocytogenes, Salmonella enterica


The goal of this study was to enhance the antimicrobial effect of slightly acidic electrolyzed water (SAEW) through addition of synergistic treatment with ultrasound (US) and mild heat treatment in order to improve the microbial safety of fresh-cut bell pepper. To evaluate the synergistic effects, the Weibull model was used to mathematically measure the effectiveness of the individual and combined treatments against Listeria monocytogenes and Salmonella Typhimurium on the pepper. The combined treatment (SAEWUS60 C) resulted in the TR values of 0.04 and 0.09 min for L. monocytogenes and S. Typhimurium, respectively, as consequence of the minimum value. Subsequently, texture analysis was carried out to test the potential effect on quality of the samples due to the involved mild heat and ultrasound treatment. When compared to the control, there was no significant change (p 0.05) in the texture (color and hardness) of the samples that were treated by 1 min of the combined treatment (SAEWUS60 C) during storage at 4 C for 7 days. This combined treatment achieved approximately 3.0 log CFU/g reduction in the two pathogens. The results demonstrate that the involved hurdle factors which are ultrasound and mild heat achieved the synergistic effect of SAEW against the two pathogens. According to the results of texture analysis, 1 min of SAEWUS60 C is the optimal condition due to without negative influence on the quality of the samples during the storage. The optimal condition shows the enhanced antimicrobial effect of SAEW and enables to improve microbial safety of fresh bell pepper in food industry as a consequence of hurdle approach.



Journal Cover

Microbe(s): Pseudomonas aeruginosa, Enterococcus faecalis, Micrococcus luteus


In the dairy industry, cleaning and disinfection of surfaces are important issues and development of innovative strategies may improve food safety. This study was aimed to optimize the combined effect of alkaline electrolyzed water (AEW) and neutral electrolyzed water (NEW) as s were significantly affected by surface roughness electropolished SSP required 10 min, 100 mg/L AEW at 30 C, whereas SSP without modification required 30 min, 300 mg/L AEW at 30 C. From confirmatory tests cells removed were 3.90 0.25 log CFU/cm2 for electropolished SSP, and 3.20 0.20 log CFU/cm2 for SSP without modification. NEW is non-corrosive, and can be advantageously used for environmentally friendly cleaning and disinfection processes.



Journal Cover

Microbe(s): Bacillus subtilis, Escherichia coli O157: H7


This study discussed the effects of different bacterial concentrations and centrifugations on the antimicrobial efficacy of electrolyzed oxidizing (EO) water on Bacillus subtilis and Escherichia coli O157:H7. Overnight grown bacterial cultures were centrifuged 1 to 3 times and bacterial concentrations were adjusted to approximately 9 (high), 7 (medium), or 5 (low) log10 CFU/mL. Antimicrobial efficacy of acidic EO water (AEW) and neutral pH EO water (NEW) containing 0.2530 mg/L available chlorine was determined. In order to ascertain the effects of AEW and NEW on targeted pathogens, cellular properties at bio-molecular levels were also studied. The results showed that the susceptibility of both pathogens decreased significantly with increasing bacterial concentrations. AEW with 10, 0.25 and 0.25 mg/L and NEW with 30, 0.5 and 0.25 mg/L available chlorine were needed for high, medium and low bacterial concentrations, respectively to non-detectable levels by direct plating for E. coli O157:H7. B. subtilis was found more resistant to both EO water treatments and only 4.1 and 3.8 log reductions were achieved for AEW and NEW containing 30 mg/L available chlorine. On the other hand, it was observed that as centrifugation time increased, both bacteria became significantly more sensitive to EO water treatments. When centrifugation period increased from 1 to 3 times, additional 2.67 and 3.38 log E. coli O157:H7 reductions were observed for AEW and NEW treatments, respectively. A similar trend was observed for B. subtilis. DNA and protein leakage increased when pathogens were treated by AEW and NEW with increasing available chlorine concentration, but decreased DNA and protein leakage were observed with increased centrifugation times. These results indicate that initial bacterial concentration and the centrifugation time are two important factors and should be carefully considered in chlorine-based antimicrobial efficacy testing.



Journal Cover

Microbe(s): Total Microbial Count


In order to evaluate slightly acidic electrolyzed water (SAEW) and sodium hypochlorite solution, the washing agents on shelf-life and quality were investigated during 25 days cold storage. The resultsshowed that the specific maximum peak force of lettuce and carrot significantly increased after treated with SAEW, while carrot with sodium hypochlorite solution treatment was not significantly (P > 0.05) increased. Also the shelf-life of lettuce processed with SAEW was prolonged for another 4.5 days. The results indicated that SAEW technology had stronger decontamination ability than sodium hypochlorite with its conveniences.



Journal Cover

Microbe(s): Total Microbial Count


Product decontamination is one of the most important processes of the hygienic practice in food industries such as Minimally Processed Vegetables (MPV) plants and sodium hypochlorite (NaOCl) solutions are commonly used as a biocide for disinfection. Although it may be corrosive and irritating when compared to , reducing the free chlorine concentration needed to sanitize salads, also decreasing water consumption whilst taking into account environmental and food quality impacts.



Journal Cover

Microbe(s): Total Microbial Count, Fungi, Yeast, Mold


The objective of this study was to determine the efficacy of electrolyzed oxidizing (EO) water in reducing natural microbiota on radish seed and sprout during seed soaking and sprouting. EO water with different available chlorine concentrations (ACC, 15, 20, 28, 33 and 40 mg/L) and different pH (2.5, 3.5, 4.5, 5.5 and 6.5) were used to soak radish seeds for 12 h and the surviving population of total aerobic bacteria, yeast and mold, and germination rate were determined. On the other hand, EO water with ACC of 30 and 50 mg/L was applied to spray sprouts during seed sprouting and the antimicrobial efficacy of EO water, as well as length, gross weight and dry weight of sprout were evaluated. The results showed that the population of natural microbiota decreased with increasing ACC of EO water, while no significant difference was observed among EO waters with different pH levels that were applied while soaking the seeds. EO water with higher ACC and lower pH slightly reduced the germination percentage of radish seed during seed soaking. EO waters with ACC of 30 and 50 mg/L sprayed during seed sprouting resulted in 1.39 and 1.58 log reductions of total aerobic bacteria, yeast and mold, respectively, and improved the length, gross weight and dry weight of the sprouts. Therefore, EO water with low ACC and near neutral pH could be used to soak seeds and water sprouts throughout seed germination and sprouting to control the population of natural microbiota on seeds and sprouts.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Salmonella Typhimurium


Automated produce washers can be a useful processing aid when treating fresh produce contaminated with pathogens. The of near neutral pH electrolyzed (NEO) water as a wash or sanitizing solution has been shown to lead to significant reductions of Escherichia coli O157:H7 and Salmonella on fresh produce. To further enhance reported pathogen reductions, the effects of a combined NEO water (155 mg/L free chlorine, pH 6.5) and ultrasound wash protocol on lettuce and tomatoes inoculated with E. coli O157:H7 and S. Typhimurium DT 104 were studied. The effects of the pH of NEO water and washer agitation on pathogen reductions were also assessed. Inoculated tomatoes and lettuce leaves were treated with either chilled deionized water or NEO water, with or without 20 kHz ultrasound (130 W and 210 W). Tomatoes were treated for 1, 3 and 5 min while lettuce was treated for 5, 10 and 15 min. Ultrasound significantly increased the oxidation-reduction potential (ORP) of NEO water (p < 0.05) but did not affect the pH and free chlorine concentration (p > 0.05). Increased washing time and higher ultrasonic power led to significantly greater reductions of both pathogens on produce items (p < 0.05). NEO water combined with 210 W ultrasonication for 15 min led to 4.4 and 4.3 log reductions of E. coli O157:H7 and S. Typhimurium on lettuce, respectively, while 210 W ultrasound for 5 min completely inactivated both pathogens on tomatoes. Both pathogens were completely inactivated in NEO water solutions, suggesting that its presents little chance of cross-contamination.



Journal Cover

Microbe(s): Total Microbial Count


This paper focused on the effectiveness of electrolyzed water (EW) at different concentrations (5, 25, 50 and 100 mg/L) combined with passive atmosphere packaging on the quality of mushroom. In order to understand the effect of EW on mushrooms, gas composition inside packages, weight loss, pH, whiteness and browning index, texture profile analysis (TPA), cap development, electrolyte leakage and FT-NIR analysis were performed during the twelve days of storage at 4 C. Samples washed with 25 and 50 mg/L EW consumed O2 lower than the other treatments. Mushrooms treated with 25 mg/L EW had a significantly lower electrolyte leakage values than untreated and 5 mg/L treated mushrooms. Mushrooms treated with 25 mg/L EW had the highest whiteness index and lowest browning index. EW treatments at the concentrations of 25 and 50 mg/L maintained the textural parameters and slowed down the weight loss better than other treatments. FT-NIR analysis supported the results obtained by weight loss and electrolyte leakage. In conclusion, the results of this research support the idea that combined of EW treatment and passive modified atmosphere packaging can be used to extend the shelf life of mushrooms.



Journal Cover

Microbe(s): Total Microbial Count, Fungi, Yeast, Mold


This study was designed to evaluate the efficacy of slightly acidic electrolyzed water (SAEW) to reduce natural microbiota on celery and cilantro at different available chlorine concentrations (ACC), different treatment time and temperatures. Additionally, SAEW treated celery and cilantro were stored at 4 and 20 C for 6 days and population of total aerobic bacteria and yeast and mold were also determined at day 0, 2, 4 and 6, separately. Results showed that log reduction of total aerobic bacteria and yeast and mold significantly increased with increasing ACC and treatment time, respectively (p < 0.05). Celery and cilantro treated with SAEW at 30 mg/L ACC for 5 min and 25 mg/L for 7 min reduced yeast and mold to non-detectable level. No significant difference was observed for disinfection efficacy of SAEW on celery and cilantro at different temperatures (4, 20 and 37 C) (p > 0.05). The microbial population on celery and cilantro maintained at a low level during storage at 4 and 20 C after SAEW treatment (total aerobic bacteria: 3.34.1 log CFU/g, yeast and mold: 2.23.5 log CFU/g). The microbial inactivation effect as well as the absence of any sensory alterations on treated celery and cilantro rendered SAEW a promising disinfectant, which can be applied in fresh produce wash to control natural microbiota.



Journal Cover

Microbe(s): Multiple


Electrolyzed water (EW) has gained immense popularity over the last few decades as a novel broad-spectrum sanitizer. EW can be produced using tap water with table salt as the singular chemical additive. The application of EW is a sustainable and green concept and has several advantages over traditional cleaning systems including cost effectiveness, ease of application, effective disinfection, on-the-spot production, and safety for human beings and the environment. These features make it an appropriate sanitizing and cleaning system for use in high-risk settings such as in hospitals and other healthcare facilities as well as in food processing environments. EW also has the potential for use in educational building, offices, and entertainment venues. However, there have been a number of issues related to the use of EW in various sectors including limited knowledge on the sanitizing mechanism. AEW, in particular, has shown limited efficacy on utensils, food products, and surfaces owing to various factors, the most important of which include the type of surface, presence of organic matter, and type of tape water used. The present review article highlights recent developments and offers new perspectives related to the use of EW in various areas, with particular focus on the food industry.



Journal Cover

Microbe(s): Escherichia coli O157:H7


Water can be a vector for foodborne pathogen cross-contamination during washing of vegetables if an efficient method of water disinfection is not used. Chlorination is the disinfection method most widely used, but it generates disinfection by-products such as trihalomethanes (THMs). Therefore, alternative disinfection methods are sought. In this study, a dynamic system was used to simulate the commercial conditions of a washing tank. Organic matter and the inoculum of Escherichia coli O157:H7 were progressively added to the wash water in the washing tank. We evaluated the effectiveness of the electrolyzed water (EW) when combining with the addition of salt (1, 0.5 and 0.15 g/L NaCl) on the pathogenic inactivation, organic matter depletion and THM generation. Results indicated that electrolysis of vegetable wash water with addition of salt (0.5 g/L NaCl) was able to eliminate E. coli O157:H7 population build-up and decrease COD accumulation while low levels of THMs were produced.



Journal Cover

Microbe(s): Escherichia coli O157:H7 Salmonella Typhimurium, Listeria monocytogenes


The bactericidal efficacy of acidic electrolyzed oxidizing water (AC-EW) (pH = 2.30, free chlorine = 38 ppm) and sterile distilled water (DW) on three pathogens (Escherichia coli O157:H7 Salmonella Typhimurium, and Listeria monocytogenes) inoculated on raw trout skin, chicken legs and beef meat surfaces was evaluated. The decontaminating effect of AC-EW and DW was tested for 0 (control), 1, 3, 5 and 10 min at 22 C. AC-EW significantly (P < 0.05) reduced the three pathogens in the inoculated samples compared to the control and DW. The level of reduction ranged between ca.1.5 1.6 logs for E. coli O157:H7 and S. Typhimurium in the inoculated foods. However, AC-EW exhibited less bactericidal effect against L. monocytogenes (1.1 1.3 logs reduction). AC-EW elicited about 1.6 2.0 log reduction in the total mesophilic count. Similar treatment with DW reduced pathogens load by ca. 0.2 1.0 log reduction and total mesophiles by ca. 0.5 0.7 logs. No complete elimination of the three pathogens was obtained using AC-EW possibly because of the level of organic matter and blood moving from food samples to the AC-EW solution. This study demonstrates that AC-EW could considerably reduce common foodborne pathogens in fish, chicken and beef products.



Journal Cover

Microbe(s): Total Microbial Count, Escherichia coli O157:H7, Listeria monocytogenes, Pseudomonas spp., Fungi, Yeast


This study evaluated the efficacy of individual treatments (thermosonication [TS+DW] and slightly acidic electrolyzed water [SAcEW]) and their combination on reducing Escherichia coli O157:H7, Listeria monocytogenes, and spoilage microorganisms (total bacterial counts [TBC], Enterobacteriaceae, Pseudomonas spp., and yeast and mold counts [YMC]) on fresh-cut kale. For comparison, the antimicrobial efficacies of sodium chlorite (SC; 100 mg/L) and sodium hypochlorite (SH; 100 mg/L) were also evaluated. Each 10 g sample of kale leaves was inoculated to contain approximately 6 log CFU/g of E. coli O157:H7 or L. monocytogenes. Each inoculated or uninoculated samples was then dip treated with deionized water (DW; control), TS+DW, and SAcEW at various treatment conditions (temperature, physicochemical properties, and time) to assess the efficacy of each individual treatment. The efficacy of TS+DW or SAcEW was enhanced at 40 C for 3 min, with an acoustic energy density of 400 W/L for TS+DW and available chlorine concentration of 5 mg/L for SAcEW. At 40 C for 3 min, combined treatment of thermosonication 400 W/L and SAcEW 5 mg/L (TS+SAcEW) was more effective in reducing microorganisms compared to the individual treatments (SAcEW, SC, SH, and TS+DW) and combined treatments (TS+SC and TS+SH), which significantly (P < 0.05) reduced E. coli O157:H7, L. monocytogenes, TBC, Enterobacteriaceae, Pseudomonas spp., and YMC by 3.32, 3.11, 3.97, 3.66, 3.62, and >3.24 log CFU/g, respectively. The results suggest that the combined treatment of TS+SAcEW has the potential as a decontamination process in fresh-cut industry.



Journal Cover

Microbe(s): Pseudomonas spp.


In the present study, we evaluated the antimicrobial activity of neutral electrolyzed water (NEW) against 14 strains of spoilage Pseudomonas of fresh cut vegetables under cold storage. The NEW, produced from solutions of potassium and sodium chloride, and sodium bicarbonate developed up to 4000 mg/L of free chlorine, depending on the salt and relative concentration used. The antimicrobial effect of the NEW was evaluated against different bacterial strains at 105 cells/ml, with different combinations of free chlorine concentration/contact time; all concentrations above 100 mg/L, regardless of the salt used, were found to be bactericidal already after 2 min. When catalogna chicory and lettuce leaves were dipped for 5 min in diluted NEW, microbial loads of mesophilic bacteria and Enterobacteriaceae were reduced on average of 1.7 log cfu/g. In addition, when lettuce leaves were dipped in a cellular suspension of the spoiler Pseudomonas chicorii I3C strain, diluted NEW was able to reduce Pseudomonas population of about 1.0 log cfu/g. Thanks to its high antimicrobial activity against spoilage microorganisms, and low cost of operation, the application of cycles of electrolysis to the washing water looks as an effective tool in controlling fresh cut vegetable microbial spoilage contamination occurring during washing steps.



Journal Cover

Microbe(s): Total Microbial Count, Fungi, Yeasts


This study investigated the effect of ultrasonic treatment on the physicochemical properties (pH, available chlorine concentration (ACC), oxidation reduction potential (ORP), spectrophotometric characteristics) of slightly acidic electrolyzed water (SAEW). The effects of individual treatments (ultrasound and SAEW) and their combination on microbial loads and quality of cherry tomatoes and strawberries were also studied. The results indicated that a 10 min ultrasonic treatment had no effect on pH, ACC, or ORP of SAEW. Ultrasound enhanced the bactericidal activity of SAEW which resulted in 1.77 and 1.29 log reductions on total aerobic bacteria, and 1.50 and 1.29 log reductions on yeasts and molds, respectively for cherry tomatoes and strawberries. The firmness of cherry tomatoes decreased while all other qualities considered were unaffected. This research indicates that SAEW in combination with ultrasound treatment has potential as a sanitization treatment to improve the efficacy of microbial inactivation on fresh produce without compromising product quality.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Listeria monocytogenes, Staphylococcus aureus, and Salmonella Typhimurium


This study evaluated the efficacy of the individual treatments (slightly acidic electrolyzed water [SAcEW] or fumaric acid [FA]) and their combination to reduce Escherichia coli O157:H7, Listeria monocytogenes, Staphylococcus aureus, and Salmonella Typhimurium in fresh pork as well as to study the shelf life and sensory quality (color, odor, and texture) of pork during storage at 4 and 10 C. The inoculated pork samples (10 g) were dipped for 3 min in each treatment (tap water [TW], SAcEW, strong acidic electrolyzed water [StAEW], 0.5% FA, or SAcEW + 0.5% FA) with or without mild heat (40 C). Decontamination of fresh pork with SAcEW +0.5% FA at 40 C for 3 min showed greater bactericidal effect compared to other treatments, which significantly (P < 0.05) reduced E. coli O157:H7, L. monocytogenes, S. aureus, and S. Typhimurium by 2.59, 2.69, 2.38, and 2.99 log CFU/g, respectively. This combined treatment significantly (P < 0.05) yielded in a longer lag time of naturally occurring bacteria (TBC) on pork stored at 4 C. This combined treatment also prolonged the shelf life of pork up to 6 days and 4 5 days when stored at 4 C and 10 C, respectively, compared to those of the untreated pork. The results suggest that the combined treatment of SAcEW + 0.5% FA has potential as a novel method to enhance the microbial safety and quality of fresh pork.



Journal Cover

Microbe(s): Salmonella Enteritidis


In order to reduce the risk of enteric pathogens transmission in animal farms, the disinfection effectiveness of slightly acidic electrolyzed water (SAEW, pH 5.85 to 6.53) for inactivating Salmonella Enteritidis on the surface of plastic poultry transport cages was evaluated. The coupled effects of the tap water cleaning time (5 to 15 s), SAEW treatment time (20 to 40 s), and available chlorine concentrations (ACCs) of 30 to 70 mg/l on the reductions of S. Enteritidis on chick cages were investigated using a central composite design of the response surface methodology (RSM). The established RS model had a goodness of fit quantified by the parameter R2 (0.971), as well as a lack of fit test (P > 0.05). The maximum reduction of 3.12 log10 CFU/cm2 for S. Enteritidis was obtained for the cage treated with tap water cleaning for 15 s followed by SAEW treatment for 40 s at an ACC of 50 mg/l. Results indicate that the established RS model has shown the potential of SAEW in disinfection of bacteria on cages.



Journal Cover

Microbe(s): Total Microbial Count


The disinfection efficacy of acidic electrolyzed water (AEW) on the fresh-cut vegetables has been recognized. However, the application of AEW in the fresh-keeping of fresh-cut vegetables was limited due to its low pH (<2.7) and higher available chlorine concentration (80200mg/L). In the present study, the microbial reduction and storage qualities of fresh-cut cilantro treated by slightly acidic electrolyzed water (SAEW) were evaluated. The results demonstrated that AEW, mild heat AEW, SAEW and mild heat SAEW treatments could reduce the populations on fresh-cut cilantro at 0 day. However, there were no significant differences among all the treatments during the late storage periods. SAEW and mild heat SAEW treatments could keep the firmness of fresh-cut cilantro and maintain the level of electrolyte leakage in comparison with other treatments. SAEW treatment showed the advantage in keeping the overall quality of fresh-cut cilantro compared with other treatments. SAEW may be a better choice in the storage of fresh-cut cilantro than AEW.



Journal Cover

Microbe(s): Staphylococcus aureus, Bacillus cereus, Escherichia coli, Aspergillus fumigatus


Application of slightly acidic electrolyzed water (SAEW) in combination with ultrasound for decontamination of kashk was investigated. SAEW had a pH of 5.3-5.5, an oxidation reduction potential of 545-600 mV, and an available chlorine concentration of 20-22 mg/L. Kashk is a dairy product with a unique aroma and a high nutritive value produced in Iran. A 2/1 SAEW/kashk ratio showed 1.42, 1.13, 1.24, and 1.37 log CFU/mL microbial reductions in Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Aspergillus fumigatus, respectively, at room temperature. A combination of SAEW treatment with ultrasound (SAEWultrasound) resulted in 1.87, 1.67, 1.71, and 1.91 log CFU/mL reductions in S. aureus, B. cereus, E. coli, and A. fumigatus, respectively. The developed hurdle approach can be a useful tool for sanitization of kashk and similar products. Application of SAEWultrasound in dairy microbial decontamination is first reported herein.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Salmonella Typhimurium


The objective of this study was to determine the efficacy of neutral pH electrolyzed (NEO) water (155 mg/L free chlorine, pH 7.5) in reducing Escherichia coli O157:H7 and Salmonella Typhimurium DT 104 on romaine lettuce, iceberg lettuce, and tomatoes washed in an automated produce washer for different times and washing speeds. Tomatoes and lettuce leaves were spot inoculated with 100 L of a 5 strain cocktail mixture of either pathogen and washed with 10 or 8 L of NEO water, respectively. Washing lettuce for 30 min at 65 rpm led to the greatest reductions, with 4.2 and 5.9 log CFU/g reductions achieved for E. coli O157:H7 and S. Typhimurium respectively on romaine, whereas iceberg lettuce reductions were 3.2 and 4.6 log CFU/g for E. coli O157:H7 and S. Typhimurium respectively. Washing tomatoes for 10 min at 65 rpm achieved reductions greater than 8 and 6 log CFU/tomato on S. Typhimurium and E. coli O157:H7 respectively. All pathogens were completely inactivated in NEO water wash solutions. No detrimental effects on the visual quality of the produce studied were observed under all treatment conditions. Results show the adoption of this washing procedure in food service operations could be useful in ensuring produce safety.



Journal Cover

Microbe(s): Escherichia coli, Vibrio parahaemolyticus


The aim of this study was to determine the combined effects of slightly acidic electrolyzed water SAEW (pH range 5.06.5, oxidationreduction potential 6501000 mV, available chlorine concentration 1080 mg/L) containing 0, 15, and 30 ppm chlorine and 0, 50, and 100 min of ultrasound US (37 kHz, 380 W) using the central composite design (CCD) on the reductions of Escherichia coli and Vibrio parahaemolyticus (initial value, approximately 67 log10 colony forming unit (CFU) of E. coli or V. parahaemolyticus/g) and the sensory properties on freshly sliced shad (Konosirus punctatus), in comparison with SAEW or US alone. Another aim was to develop the response surface model for E. coli and V. parahaemolyticus in the shad treated with the combination of SAEW and US. Single treatments with SAEW (chlorine 15 ppm), SAEW (chlorine 30 ppm), or US for 50 min caused a much-less-than-1-log10 reduction in the number of both E. coli and V. parahaemolyticus in the shad. In contrast, the combination of SAEW (15 or 30 ppm chlorine) and US (50 or 100 min) caused >1-log10 reduction of E. coli numbers (1.041.86 log reduction) and V. parahaemolyticus (1.021.42 log reduction) in the shad. In addition, the sensory properties of the shad were not changed under the harshest conditions of the combination (SAEW with chlorine at 30 ppm and US for 100 min). Response surface models were developed for the population of E. coli (Y=6.153220.024732X 10.016486X 20.00015X 1 X 20.00024X 1 20.00007X 2 2) and V. parahaemolyticus (Y=5.676490.042598X 10.014013X 20.00003X 1 X 20.00006X 1 20.00062X 2 2 ), where Y is the bacterial population (log10 CFU), X 1 is ppm chlorine in SAEW, and X 2 is the duration of treatment (min) with US. The appropriateness of the models was verified by bias factor (B f 1.10 for E. coli, 1.03 for V. parahaemolyticus), accuracy factor (A f 1.11 for E. coli, 1.05 for V. parahaemolyticus), mean square error (MSE 0.0087 for E. coli, 0.0028 for V. parahaemolyticus), and coefficient of determination (R 2 0.976 for E. coli, 0.982 for V. parahaemolyticus). To produce a 1-log10 reduction of E. coli and V. parahaemolyticus, US treatment times for E. coli and V. parahaemolyticus were calculated within the maximum of 54 and 67 min, respectively, at chlorine 10 ppm in SAEW. SAEW chlorine concentrations (ppm) for E. coli and V. parahaemolyticus were calculated within the maximum of 38 and 41 ppm, respectively, at 20 min of US. Therefore, the resulting response surface models for E. coli and V. parahaemolyticus should be further validated on slices of other kinds of raw fish. Ultimately, the response surface quadratic polynomial equations may thus be used for predicting the combined treatments of SAEW and against E. coli and V. parahaemolyticus in raw fish production, processing, and distribution.



Journal Cover

Microbe(s): MNV-1, Norovirus, HAV, Hepatitis A


The ability of acidic electrolyzed oxidizing water (AEO) and neutral electrolyzed oxidizing water (NEO) to inactivate the murine norovirus (MNV-1) surrogate for human norovirus and hepatitis A virus (HAV) in suspension and on stainless steel coupons in the presence of organic matter was investigated. Viruses containing tryptone (0.0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0) were mixed with AEO and NEO for 1 min. In addition, stainless steel coupons containing MNV-1 with or without organic matter were treated with AEO or NEO for 3, 5, and 10 min. AEO was proven effective and generally killed more MNV-1 and HAV in suspension than NEO. Depending on the EO water generator, free chlorine concentrations are required to inactivate MNV-1 and HAV by 3-log PFU/mL or greater ranged from 30 mg/L to 40 mg/L after a 1 min contact time. The virucidal effect increased with increasing free chlorine concentration and decreased with increasing tryptone concentration in suspension. Both AEO and NEO at 70100 mg/L of free chlorine concentration significantly reduced MNV-1 on coupons in the absence of organic matter. However, there was no significant difference between these two treatments in the presence of organic matter. In addition, the efficacy of these two EO waters on stainless steel coupons increased with the increasing treatment time. Results indicated that AEO and NEO can reduce MNV-1 and HAV in suspension. However, higher free chlorine concentrations and longer treatment times may be necessary to reduce viruses on contact surfaces or in the presence of organic matter.



Journal Cover

Microbe(s): Total Microbial Count, Listeria


Three experiments were performed to enumerate the natural microflora on unwashed peaches, known as field peaches, and to determine the efficacy of using acidified electrolyzed water as a topical antimicrobial to remove or reduce the number of the natural microflora or inoculated Listeria innocua from to peach surfaces. During the first experiment, field peaches were divided into four treatment groups: no wash (NW), tap water wash (TW), acidified electrolyzed water wash (AEW), and chlorinated water wash (CL). Peaches were dipped into each of the treatment solutions at ambient temperature and immediately removed (approximately 5 seconds). Peaches were then rinsed in 100 mL of 0.1% peptone and rinsates were plated on aerobic plate count agar for enumeration. For the second experiment, exposure time to the treatment solutions and the temperature of the same treatment solutions were studied. Field peaches were again divided into NW, TW, AEW, and CL but treatments were applied using two exposure times of 5 seconds and 40 minutes at a temperature of 2C (samples were given either a 0 or 40 in their labels to denote exposure time in minutes where 5 second exposures = 0 minutes e.g. TW-0, TW-40, AEW-0, etc.). Rinsing and plating was conducted as mentioned above. Experiment three investigated the efficacy of NW, TW, AEW, and Cl, in reducing numbers of Listeria innocua on peaches that were previously inoculated and held at 4C for 24 hours. Inoculated peaches were dipped in treatment solutions for 5 second and 40 minute times at 2C. Results showed that exposure time had a significant effect on bacterial reduction for both AEW and Cl treatments. Average aerobic counts from all NW peaches was 4.2 log10 CFU/g peach for natural microflora and 4.3 log10 CFU/g peach for samples inoculated with iii Listeria. The following results show the number of bacteria recovered (log10 CFU/g peach) from natural microflora samples and Listeria inoculated samples, respectively: NW = 4.2 and 4.9, TW0 = 3.8 and 4.3, TW-40 = 3.2 and 4.7, AEW-0 = 3.6 and 3.7, AEW-40 = 2.6 and 1.6, CL=0 = 3.7 and 3.7, and CL-40 = 2.3 and 1.9. Greatest reductions were found with AEW-40 and CL-40 at refrigerated temperatures against both aerobic microorganisms and Listeria innocua. They reduced natural microflora counts by approximately 1.6 and 1.9 log10 CFU/g peach, respectively and they also reduced Listeria innocua counts by 3.3 and 3.0 log10 CFU/g peach, respectively. Listeria innocua, like monocytogenes, thrives in cold environments and the analysis of this studys results suggest that Listeria in TW-40 may have reattached to peaches during exposure. Color studies were also performed on the peaches from the preliminary experiment and Experiment 2 to determine the effects of exposing the peaches to low pH environment such as that of the AEW used in this study. Peaches were analyzed for Lab color data prior to their exposure to treatment solutions then they were analyzed again after their treatment concluded and they had air dried until no visible moisture remained. There was no significant color difference shown in any of the peaches when the pre- and post-treatment data was compared. Results from these studies demonstrate that total aerobic microorganisms and Listeria spp. may be reduced, but not eliminated, during washing (by dipping) with AEW or CL with similar reductions for both antimicrobial treatments.



Journal Cover

Microbe(s): Dioscorea spp.


In this study, the effects of electrolyzed oxidizing water (EOW) on the prevention of enzymatic browning of fresh-cut Jiu Jinhuang Chinese yam were investigated. The yams were immersed in the inhibitors for 25 min at 20 C. Compared with the tap water (TW) treatment, the chromatic attributes were significantly different after 72 h of storage (P < 0.05). The activities of polyphenol oxidase (PPO, EC 1.10.3.1), peroxidase (POD, EC 1.11.1.7), and L-phenylalanine ammonia lyase (PAL, EC 4.3.1.5) were inhibited when measured at 24 h. The contents of phenolic acids, including gallic and chlorogenic acid, in the group treated with the slightly acidic electrolyzed water (SAEW) were higher than those treated with TW and neutral electrolyzed water (NEW). The group treated with NEW had the highest total phenol content (P < 0.05, at 24 h), while the group treated with SAEW had the highest flavonoid content (P < 0.05) during storage. Without being treated with inhibitors, the Km and Vmax values of yam PPO were 0.0044 mol/L and 0.02627 U/min, respectively, and the Ki of samples treated with SAEW and citric acid (CA) were 15.6607 and 2.3969 mol/L, respectively. These results indicate that EOW is beneficial as a browning inhibitor.



Journal Cover

Microbe(s): Total Microbial Count


Preliminary mechanism of acidic electrolyzed water (AEW) ice on improving the quality and safety of shrimp was investigated by examining the physicochemical and microbiological changes, sarcoplasmic proteins and enzymatic activities. The results showed that compared with tap water (TW) ice, AEW ice had an obvious (p < 0.05) capability in limiting the changes of pH and shrinkage of muscle fibers in shrimp. Plate count enumeration and PCRDGGE indicated that AEW greatly inhibited growth of bacteria on shrimp. Additionally, AEW ice had no adverse effects on sarcoplasmic proteins by SDSPAGE method. And AEW ice displayed inhibitory activity (p < 0.05) toward cathepsin B and polyphenol oxidase (PPO), although it did not present positive effects on inhibiting cathepsin D, acid phosphatase and lipase activity. Thus, this study brought new evidence to further demonstrate that AEW ice can serve as a promising technology for improving the quality of aquatic products in food industry.



Journal Cover

Microbe(s): Campylobacter


This study investigated the effectiveness of spraying electrolysed water for reducing the numbers of Campylobacter on chicken carcasses. Previous studies have used solutions with free chlorine concentrations above 25 ppm and low pH to treat inoculated carcasses. The four trials described here were carried out at process plants treating naturally contaminated, hot, birds with electrolysed sodium chloride or sodium carbonate solutions, plain water, or no water. The birds were chilled after treatment. Free chlorine concentrations were all below 20 ppm, pH was 7 units or more, and redox potentials were below 830 mV. None of the treatments produced more than a 0.3-log reduction in Campylobacter numbers compared to counts on untreated carcasses. This study concludes that, at the low chlorine concentrations allowed in the EU, spraying with electrolysed water is not an effective method of reducing the number or prevalence of Campylobacter on chicken carcasses.



Journal Cover

Microbe(s): Escherichia coli


In the present study, the disinfection efficacy on fresh-cut cilantro of the combination of strongly acidic electrolyzed water (AcEW) and alkaline electrolyzed water (AlEW) was evaluated, in comparison with single slightly acidic electrolyzed water (SAEW) and single AcEW treatments. The populations of E. Coli O78 on inoculated cilantro treated by AlEW 5 min + AcEW 5 min, was not detected while 3.43 and 3.73 log10 CFU/g in the AlEW 2.5 min + AcEW 2.5 min and AcEW 2 min + AlEW 2 min + AcEW 2 min treatments respectively. Our results implied that the bactericidal abilities of the combination of AlEW and AcEW treatments were higher than that of single AcEW and SAEW, which also was demonstrated microscopically by scanning electron microscopy (SEM). Moreover, the efficacy of combination of AcEW and AlEW in reducing natural micro flora on fresh-cut cilantro was also evaluated compared with single AcEW and SAEW. The results showed that the combination of AlEW and AcEW had stronger sterilization ability than single AcEW and SAEW. Considering the utilizations of AlEW and disinfection efficacy, we suggest that the combination of AlEW and AcEW may also be a better choice in fresh-cut produce.



Journal Cover

Microbe(s): Salmonella


Tomato Best Management Practices require Florida packers to treat tomatoes in a flume system containing at least 150 ppm of free chlorine or other approved sanitizer. However, research is needed to determine the ability of these sanitizers to prevent the transfer of pathogens from contaminated to uncontaminated tomatoes, particularly under realistic packinghoconditions. The goal of this research was to assess the minimum levels of sanitizer needed to prevent Salmonella cross-contamination between tomatoes in a model flume system under clean conditions and conditions where organic matter was added. Inoculated tomatoes (ca. 8.3 log CFU per tomato) were treated along with uninoculated tomatoes in a model flume system containing 0, 10, or 25 ppm of hypochlorous acid (HOCl) under organic loading conditions of 0, 500, or 4,000 ppm of chemical oxygen demand (COD). In the absence of HOCl, uninoculated tomatoes were highly contaminated (ca. 5 log CFU per tomato) by 15 s. No contamination was detectable (<2 log CFU per tomato) on uninoculated tomatoes when HOCl was present, except with 10 ppm at 4,000 ppm of COD, suggesting failure of 10 ppm of HOCl as a sanitizer under very high organic loading conditions. In the presence of HOCl or peroxyacetic acid, Salmonella was undetectable (<1 log CFU/ml) in the model flume water samples after 2 and 30 s, respectively. Upon enrichment, none of the uninoculated tomatoes treated with 25 ppm of HOCl for 120 s were positive for Salmonella, even in the presence of organic loading at 500 ppm of COD. Based on these findings, 25 ppm of HOCl may be adequate to prevent cross-contamination when the concentration is properly maintained, COD does not exceed 500 ppm, and tomatoes are treated for at least 120 s. Further validation in a larger commercial setting and using higher organic loading levels is necessary becamanaging HOCl at this low concentration is difficult, especially in a recirculating system. The of less sanitizer by packers could reduce chemical and disposal costs.



Journal Cover

Microbe(s): Multiple


Water disinfection is one of the most critical processing steps in fresh-cut vegetable production. Technologies capable for the efficient disinfection of process water and recycled water would allow reducing wastewater and have less impact on the environment. Among the chemical disinfectants, hypochlorite solutions are still the most widely used. Electrochemical disinfection of the wash water has been demonstrated to be effective in eliminating a wide spectrum of pathogens in process water. Both hypochlorite solutions and electrochemically produced chlorine compounds, in particular hypochlorous acid, are effective disinfectants when adequate doses are used. A new electrochemical process using boron-doped diamond electrodes can generate additional reactive oxidant species than chlorine and further enhance the disinfecting capacity. However, there are pros and cons on the use of one or other disinfectant agents. In this review, the technological advantages and the limitations of electrolyzed water, particularly regarding the organic matter content, are discussed and compared to the use of hypochlorite.



Journal Cover

Microbe(s): Aspergillus flavus, A. parasiticus, A. nomius, RE: Aflatoxin


Aflatoxins, a group of extremely toxic mycotoxins produced by Aspergillus flavus, A. parasiticus and A. nomius, can occur as natural contaminants of certain agricultural commodities, particularly maize. These toxins have been shown to be hepatotoxic, carcinogenic, mutagenic and casevere human and animal diseases. The effectiveness of neutral electrolyzed oxidizing water (NEW) on aflatoxin detoxification was investigated in HepG2 cells using several validation methodologies such as the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, the induction of lipid peroxidation, the oxidative damage by means of glutathione modulation, the Ames test and the alkaline Comet assay. Our results showed that, after the aflatoxin-contaminated maize containing 360 ng/g was soaked in NEW (60 mg/L available chlorine, pH 7.01) during 15 min at room temperature, the aflatoxin content did not decrease as confirmed by the immunoaffinity column and ultra performance liquid chromatography methods. Aflatoxin fluorescence strength of detoxified samples was similar to untreated samples. However, aflatoxin-associated cytotoxicity and genotoxicity effects were markedly reduced upon treatment. According to these results, NEW can be effectively used to detoxify aflatoxin-contaminated maize.



Journal Cover

Microbe(s): Total Microbial Count, RE: Nitrite


eafy vegetables are the major source of nitrite intake in the human diet, and technological processing to control nitrite levels in harvested vegetables is necessary. In the current work, the effect of electrolyzed oxidizing water (EOW) on the nitrite and nitrate levels in fresh spinach during storage was studied. EOW treatment, including slightly acidic electrolyzed water and acidic electrolyzed water, was found to effectively reduce nitrite levels in fresh spinach during storage levels in the late period were 30 to 40% lower than that of the control. However, the nitrate levels in fresh spinach during storage were not influenced by EOW treatment. The reduction of nitrite levels in EOW-treated fresh spinach during storage can be attributed to the inactivation of nitrate reductase directly and to the reduction of bacterial populations. Our results suggest that treatment with slightly acidic electrolyzed water may be a better choice to control nitrite levels in fresh vegetables during storage. This study provided a useful method to reduce nitrite levels in fresh spinach.



Journal Cover

Microbe(s): Vibrio parahaemolyticus


The bactericidal effects of strongly acidic hypochlorous acid water (StAHA) and slightly acidic hypochlorous acid water (SlAHA) against Vibrio parahaemolyticus contaminated on surface of raw fish and shellfish were examined. V. parahaemolyticus contaminated with about 7.0 log CFU/g on the meat chunk of olive flounder (Paralichthys olivaceus), and yellow tail (Seriola quinqueradiata), and 4.0 log CFU/g on the shucked scallop (Patinopecten yessoensis) were not detected after washing with StAHA and SlAHA at a ratio of 30:1 on a sample weight basis. However, 1.0 log CFU/g of V. parahaemolyticus was survived on shucked oyster (Crassostrea gigas) under same treatment conditions. The bactericidal effects of acidic hypochlorous acid water against V. parahaemolyticus contaminated on surface of shucked oyster were not as effective as those against V. parahaemolyticus contaminated on surface of meat chunk of olive flounder, yellow tail, and shucked scallop. Such differences can be attributed to the complicated surface conformation of oyster.



Journal Cover

Microbe(s): Escherichia coli O104: H4, Listeria monocytogenes, Campylobacter jejuni, Aeromonas hydrophila, Vibrio parahaemolyticus


This study investigated the effect of electrolyzed water on pathogenic bacteria cell suspensions. Specifically, we evaluated the efficacy of strong and weak acidic electrolyzed waters (SACEW, WACEW) and strong and weak alkaline electrolyzed waters (SALEW, WALEW) on Vibrio parahaemolyticus, Listeria monocytogenes, Aeromonas hyificantly more resistant to ALEW compared to ACEW. Results also show that the bactericidal activity of SACEW (20 mg/mL ACC) was more effective than WACEW (10 mg/mL ACC) in terms of inactivating E. coli O104:H4. Alkaline-electrolyzed waters were found to reduce cell numbers by 13 log (P < 0.05). However, alkaline electrolyzed water was less effective (P < 0.05) than acidic electrolyzed treatment.



Journal Cover

Microbe(s): Listeria monocytogenes


This study evaluated the efficacy of thermosonication combined with slightly acidic electrolyzed water (SAcEW) on the shelf life extension of fresh-cut kale during storage at 4 and 7 C. Each kale (10 0.2 g) was inoculated to contain approximately 6 log CFU/g of Listeria monocytogenes. Each inoculated or uninoculated samples was dip treated at 40 C for 3 min with deionized water, thermosonication (400 W/L), SAcEW (5 mg/L), sodium chlorite (SC; 100 mg/L), sodium hypochlorite (SH; 100 mg/L), and thermosonication combined with SAcEW, SC, and SH (TS + SAcEW, TS + SC, and TS + SH, respectively). Growths of L. monocytogenes and spoilage microorganisms and changes in sensory (overall visual quality, browning, and off-odour) were evaluated. The results show that lag time and specific growth rate of each microorganism were not significantly (P > 0.05) affected by treatment and storage temperature. Exceeding the unacceptable counts of spoilage microorganisms did not always result in adverse effects on sensory attributes. This study suggests that TS + SAcEW was the most effective method to prolong the shelf life of kale with an extension of around 4 and 6 days at 4 and 7 C, respectively, and seems to be a promising method for the shelf life extension of fresh produce.



Journal Cover

Microbe(s): Staphylococcus aureus, Escherichia coli


The article focuses on investigation of the effects of usage of acidic electrolyzed water (AEW) with different sodium chloride concentration (0.001, 0.01, and 0.1) for the preparation of carrageenan and gelatine hydrosols and hydrogels. To determine physiochemical properties of hydrosols, the pH, oxidation-reduction potential (ORP), available chloride concentration (ACC) and rheological parameters such us gelation and flow temperatures were measured. The samples were also 0.1 w/v). These results suggest that hydrogels and hydrosols incorporated with AEW may be used for food preservation.



Journal Cover

Microbe(s): Total Microbial Count


The combined effect of weakly acidic electrolyzed water (WAEW) ice-glazing and modified atmosphere packaging (MAP) treatment on the quality of pacific white shrimp (Litopenaeus vannamei) during frozen storage was investigated in terms of microbiological activity, TVBN, TMA and TBARS content, texture, color and volatile flavor analysis. As a result, significantly (p < 0.05) higher inhibitor effects on total aerobes and Staphylococcus aureus were observed in WAEW ice-glazed shrimp packaged in 40% CO2 + 10% O2 + 50% N2 or in 30% CO2 + 20% O2 + 50% N2 than the water- and WAEW ice-glazed batches. Additionally, chemical analysis results showed that WAEW ice-glazing combined with MAP was highly effective in maintaining lower TVBN, TMA and TBARS values in frozen shrimp, perhaps due to the synergistic effect of antibacterial and antioxidant abilities. On the other hand, the texture, L*, and a* results also confirmed that this combined treatment effectively retarded the degradation of the physical structure of shrimp muscle and showed a positive effect on the stability of color during frozen storage. However, the presence of WAEW ice-glaze showed a negative effect on the volatile flavor of thawed shrimp due to the volatile chlorine and chlorine dioxide, but no significant effect in the cooked samples. Overall, the application of WAEW ice-glazing combined with MAP on peeled frozen shrimp is advisable to achieve better quality maintenance and extend the shelf-life of refrigerated products.



Journal Cover

Microbe(s): Escherichia coli, Salmonella enteritidis, Staphylococcus aureus


The objective of this study was to evaluate the effectiveness of slightly acidic electrolyzed water (SAEW) in reducing pathogens on pure cultures and on cotton fabric surfaces in the presence of organic matter and estimate its efficacy in comparison with povidone iodine solution for reducing pathogenic microorganisms on internal surfaces of layer houses. Pure cultures of E.coli, S.enteritidis, and S.aureus and cotton fabric surfaces inoculated with these strains were treated with SAEW in the presence of bovine serum albumin (BSA). In the absence of BSA, complete inactivation of all strains in pure cultures and on cotton fabric surfaces was observed after 2.5 and 5 min treatment with SAEW at 40 mg/L of available chlorine concentration (ACC), respectively. The bactericidal efciency of SAEW increased with increasing ACC, but decreased with increasing BSA concentration. Then, the surfaces of the layer houses were sprayed with SAEW at 60, 80, and 100 mg/L of ACC and povidone iodine using the automated disinfection system at a rate of 110 mL/m2, respectively. Samples from the floor, wall, feed trough, and egg conveyor belt surfaces were collected with sterile cotton swabs before and after spraying disinfection. Compared to tap water, SAEW and povidone iodine significantly reduced microbial populations on each surface of the layer houses. SAEW with 80 or 100 mg/L of ACC showed significantly higher efficacy than povidone iodine for total aerobic bacteria, staphylococci, coliforms, or yeasts and moulds on the floor and feed trough surfaces (P < 0.05). SAEW was more effective than povidone iodine at reducing total aerobic bacteria, coliforms, and yeasts and moulds on the wall surface. Additionally, SAEW had similar bactericidal activity with povidone iodine on the surface of the egg conveyor belt. Results suggest that SAEW exerts a higher or equivalent bactericidal efficiency for the surfaces compared to povidone iodine, and it may be used as an effective alternative for reducing microbial contamination on surfaces in layer houses.



Journal Cover

Microbe(s): Total Microbial Count


This paper discussed the effectiveness of using electrolyzed (EO) water for shelf-life extension for aquatic foods including live shellfish, and for sanitizing water and food contact surfaces. Highlight focused on the effectiveness of EO water on microorganisms and on the different parameters affecting efficacy which includes organic matter, exposure time, temperature, EO water properties, and inactivation of microbes.



Journal Cover

Microbe(s): Total Microbial Count


The decontamination efficacy of neutral electrolyzed water (NEW) was evaluated using shredded cabbages and carrots in both a scalable laboratory system (experiment I) and an actual processing line in a plant (experiment II). In experiment I, the antimicrobial effect of highly concentrated NEW (up to the maximum regulated level: 200 ppm) was tested to determine the appropriate conditions for use in an actual plant test: (1) hypochlorous acid (HClO) concentration (100, 150, and 200 ppm), (2) ratio of sample weight to NEW volume (1:5, 1:10, and 1:20), and (3) treatment time (5, 10, 20, and 30 min), using 2 kg of shredded cabbages and carrots. In experiment II, the feasibility of the NEW treatment was validated on an actual processing line (treatment unit: 20 kg), including cutting, three washing steps (two air bubble washes for 5 min each and 150 ppm NEW for 5 min at ratio of 1:10), rinsing (5 min), and dehydration (5 min). Overall, the microbial reductions tended to increase as the HClO concentration, ratio of sample to NEW, and treatment time increased. The results obtained from experiment I indicated that the maximum conditions (NEW 200 ppm, 1:20, 30 min) achieved 3.3 3.5 log CFU/g reductions in the coliform counts. After treatment with 200 ppm NEW for > 10 min, however, there were noticeable color changes (color differences, DE > 5.0) in both the shredded cabbages and carrots. In the experiment II, the microbial populations were not affected by cutting and two air bubble treatments, whereas washing with NEW greatly reduced both the aerobic plate counts (1.93 2.17 log CFU/g) and coliform counts (0.97 1.51 log CFU/g). More than 2 log CFU/g of indigenous flora were reduced from raw materials to final products with both shredded cabbages (2.05 2.48 log CFU/g) and carrots (2.34 2.76 log CFU/g). These results may provide useful recommendations for the practical application of highly concentrated NEW in the fresh-cut produce industry to improve the microbiological safety without quality deterioration.



Journal Cover

Microbe(s): Escherichia coli O157:H7


This study was conducted to investigate the disinfection efficacy of hurdle treatments (thermosonication plus slightly acidic electrolyzed water [SAcEW]) and to develop a model for describing the effect of storage temperatures (4, 10, 15, 20, 25, 30, and 35 C) on the growth of Escherichia coli O157:H7 on fresh-cut kale treated with or without (control) thermosonication combined with SAcEW. The hurdle treatments of thermosonication plus SAcEW had strong bactericidal effects against E. coli O157:H7 on kale, with approximately 3.3-log reductions. A modified Gompertz model was used to describe growth parameters such as specific growth rate (SGR) and lag time (LT) as a function of storage temperature, with high coefficients of determination (R2 > 0.98). SGR increased and LT declined with rising temperatures in all samples. A significant difference was found between the SGR values obtained from treated and untreated samples. Secondary models were established for SGR and LT to evaluate the effects of storage temperature on the growth kinetics of E. coli O157:H7 in treated and untreated kale. Statistical evaluation was carried out to validate the performance of the developed models, based on the additional experimental data not used for the model development. The validation step indicated that the overall predictions were inside the acceptable prediction zone and had lower standard errors, indicating that this new growth model can be used to assess the risk of E. coli O157:H7 contamination on kale.



Journal Cover

Microbe(s): Total Microbial Count, Fungi, Yeasts


The work presented here aims to contribute with a sustainable alternative to chemicals for avoiding deterioration of harvested date palm fruits by evaluating the single or combined use of UV-C radiation and ozonated or electrolyzed water (EW). In this way, the effects of UV-C light (0; 2.37; 6.22; 8.29 and 12.14 kJ m 2) alone, and the combined effect of 6.22 kJ m 2 UV-C with neutral EW (NEW, pH 6.99, 870 mV ORP, 100 mg L 1 free chlorine), alkaline EW (AEW, pH 11.28, 880 mV ORP, 1.83 mg L 1 free chlorine) and ozonated (O3, 0.55 mg/L ozone) water on overall quality of Deglet Nour dates stored for 30 days at 20 C were studied. Microbial growth, weight loss, firmness, pH, titratable acidity, moisture, water activity, sugars and phenolics content, antioxidant activity color and sensory quality were monitored. UV-C light, mainly at 6.22 kJ m 2, alone or combined with NEW, AEW and O3, kept the overall quality of dates during storage, Moreover, those treatments reduced the most mesophilic, coliforms, yeasts and molds counts. In summary, these combined emergent sanitizers could be useful for disinfection of fresh dates while keeping quality and prolonging shelf-life.



Journal Cover

Microbe(s): Bacillus cereus


The combined effects of ultrasonication and slight acidic electrolyzed water were investigated to improve the microbial safety of brown rice against Bacillus cereus infection and to evaluate the growth kinetics of these bacteria during storage of untreated and treated rice at various temperatures (5, 10, 15, 20, 25, 30, and 35C). The results indicate that this combination treatment was bactericidal against B. cereus, resulting in an approximately 3.29-log reduction. Although B. cereus can be efficiently reduced by treatment, temperature abduring storage can allow B. cereus to recover and grow. A primary growth model (Baranyi and Roberts equation) was fitted to the raw growth data from untreated (control) and treated samples to estimate growth rate, lag time, and maximum population density, with a low standard error of the residuals (0.140) and high adjusted coefficient of determination (>0.990). The growth curves obtained from the Baranyi and Roberts model indicated that B. cereus grew more slowly on treated brown rice than on untreated brown rice. Secondary models predicting the square root of the maximum growth rate and the natural logarithm of the lag time as a function of temperature were satisfactory (bias factor = 0.993 to 1.013 accuracy factor = 1.290 to 1.352 standard error of prediction = 18.828 to 36.615%). Inactivation results and the model developed and validated in this study provided reliable and valuable growth kinetics information for quantitative microbiological risk assessment studies of B. cereus on brown rice.



Journal Cover

Microbe(s): Vibrio parahaemolyticus, Vibrio vulnificus, Salmonella Enteritidis, Escherichia coli


Pathogenic contamination is a food safety concern. This study was conducted to investigate the efficacy of neutral electrolyzed water (NEW) in killing pathogens, namely, Vibrio parahaemolyticus, Vibrio vulnificus, Salmonella Enteritidis, and Escherichia coli in shrimp. Pure cultures of each pathogen were submerged separately in NEW containing five different chlorine concentrations: 10, 30, 50, 70, and 100 ppm. For each concentration, three submersion times were tested: 1, 3, and 5 min. The population of V. parahaemolyticus was rapidly reduced even at low concentrations, but prolonged contact times caused only a slight reduction. V. vulnificus was gradually inhibited with increasing NEW concentrations and contact times. For the V. parahaemolyticus applications of 70 ppm for 5 min and of 100 ppm for 3 min, each eliminated 7 log CFU/ml. For V. vulnificus, applications of 50 ppm for 3 min and 100 ppm for 1 min, each eliminated 7 log CFU/ml. Salmonella Enteritidis and E. coli were slightly reduced by NEW. Applications of 50 ppm for 15 min and 10 ppm for 30 min completely eliminated 4.16 log CFU/g of V. parahaemolyticus in inoculated shrimp, while only a 1-log CFU/g reduction of V. vulnificus was detected. Soaking shrimp in 10 ppm NEW for 30 min did not affect its sensory quality. Our results suggest NEW could be an alternative sanitizer to improve the microbiological quality of seafood.



Journal Cover

Microbe(s): Vibrio parahaemolyticus


Vibrio parahaemolyticus is the leading cause of seafood-derived illness in China and a possible mechanism leading to illness is cross contamination of cooked shrimp. The objective of this study was to establish a mathematical model of the inactivation of V. parahaemolyticus on cooked shrimp by acidic electrolyzed water (AEW) as a function of three variables (NaCl concentration to electrolysis, X1; treatment time, X2; treatment temperature, X3) and to define priority factors which can significantly enhance the bactericidal efficiency to reduce the risk of illness caused by V. parahaemolyticus. The combined effects of NaCl concentration (0.7 2.4 g/L), treatment time (3.6 10.4 min) and temperature (23 57 C) on Log reductions of V. parahaemolyticus on cooked shrimp were investigated according to a central composite design, and the Log reductions were modeled using a response surface model. The result showed the established RS model had a goodness of fitting quantified by the parameters of R2 (0.982), lack of fit test (p > 0.05), the root-mean-squares error (RMSE = 0.15), the accuracy factor (Af = 1.10) and bias factor (Bf = 0.99). The model was validated with additional random 8 conditions within the range of the experimental domain. It showed that the established RS model possessed a good performance and suitability approved by RMSE (0.43), Af (1.28) and Bf (1.19). Moreover, the effects of the independent variable and their interactions on response value were ranked as X3 = X32 >> X1X3 > X2 > X1 according to Pareto charts and response surface plots analysis. The present work could serve as useful tools for predicting the inactivation of V. parahaemolyticus on cooked shrimp by AEW.



Journal Cover

Microbe(s): Escherichia coli O157:H7


The purpose of this study was to evaluate and model the growth of Escherichia coli O157:H7 in fresh-cut lettuce submitted to a neutral electrolyzed water (NEW) treatment, packaged in passive modified atmosphere and subsequently stored at different temperatures (4, 8, 13, 16 C) for a maximum of 27 days. Results indicated that E. coli O157:H7 was able to grow at 8, 13, and 16 C, and declined at 4 C. However at 8 C, the lag time lasted 19 days, above the typical shelf-life time for this type of products. A secondary model predicting growth rate as a function of temperature was developed based on a square-root function. A comparison with literature data indicated that the growth predicted by the model for E. coli O157:H7 was again lower than those observed with other disinfection treatments or packaging conditions (chlorinated water, untreated product, NEW, etc.). The specific models here developed might be applied to predict growth in products treated with NEW and to improve existing quantitative risk assessments.



Journal Cover

Microbe(s): Vibrio parahaemolyticus


The objective of this study was to investigate the fate of Vibrio parahaemolyticus on shrimp after acidic electrolyzed water (AEW) treatment during storage. Shrimp, inoculated with a cocktail of four strains of V. parahaemolyticus, were stored at different temperatures (4 30 C) after AEW treatment. Experimental data were fitted to modified Gompertz and Log-linear models. The fate of V. parahaemolyticus was determined based on the growth and survival kinetics parameters (lag time, ; the maximum growth rate, max; the maximum growth concentration, D; the inactivation value, K) depending on the respective storage conditions. Moreover, real-time PCR was employed to study the population dynamics of this pathogen during the refrigeration temperature storage (10, 7, 4 C). The results showed that AEW treatment could markedly (p < 0.05) decrease the growth rate ( max) and extend the lag time ( ) during the post-treatment storage at 30, 25, 20 and 15 C, while it did not present a capability to lower the maximum growth concentration (D). AEW treatment increased the sensitivity of V. parahaemolyticus to refrigeration temperatures, indicated by a higher (p < 0.05) inactivation value (K) of V. parahaemolyticus, especially for 10 C storage. The results also revealed that AEW treatment could completely suppress the proliferation of V. parahaemolyticus in combination with refrigeration temperature. Based on above analysis, the present study demonstrates the potential of AEW in growth inhibition or death acceleration of V. parahaemolyticus on seafood, hence to greatly reduce the risk of illness caused by this pathogen during post-treatment storage.



Journal Cover

Microbe(s): Total Microbial Count


Electrolyzed water ice is a relatively new concept developed in food industry in recent years. The objective of this study was to investigate the effects of acidic electrolyzed water (AEW) ice, compared with tap water (TW) ice, on quality of shrimp (Litopenaeus vannamei) in dark condition. The chemical changes, microbiological changes and polyphenol oxidase (PPO) activity of shrimp stored in AEW ice or TW ice were measured periodically. The results showed that AEW ice significantly (p < 0.05) inhibited the changes of pH, the formation of total volatile basic nitrogen (TVBN), and the proliferation of total bacteria counts in shrimp. The diversity of bacterial flora in shrimp stored in AEW ice was greatly reduced according to the Shannon index and the average similarity coefficient based on PCR-DGGE method. Additionally, AEW ice could serve as a potential substance to inhibit PPO activity in shrimp. Based on above analysis, AEW ice is a valid post-harvest treatment for preserving the quality of seafood in dark condition.



Journal Cover

Microbe(s): Total Microbial Count


Electrolyzed water ice is a relatively new concept developed in food industry in recent years. The effect of acidic electrolyzed water (AEW) ice on preserving the quality of shrimp (Litopenaeus vannamei) was investigated. Physical, chemical, and microbiological changes of the shrimp were examined during the storage. The results showed that compared with tap water (TW) ice, AEW ice displayed a potential ability in limiting the pH changes of shrimp flesh and significantly (p < 0.05) retarded the changes of color difference and the formation of total volatile basic nitrogen (TVBN). And AEW ice treatment had no adverse effects on the firmness of shrimp. Conventional plate count enumeration and PCR-DGGE demonstrated that AEW ice had a capability of inhibiting growth of bacteria on raw shrimp, and the maximum reductions of population reached >1.0 log CFU/g (>90%) on the sixth day. Moreover, AEW ice was clearly more efficient in maintaining the initial attachments between muscle fibers in shrimp according to histological section analysis. On the basis of above analysis, AEW ice can be a new alternative of traditional sanitizer to better preserve the quality of seafood in the future.



Journal Cover

Microbe(s): Escherichia coli O157:H7


Effect of ultrasonication (40 kHz) to enhance low concentration electrolyzed water (LcEW) efficacy for microbial decontamination on lettuce leaves was investigated. Lettuce was separately treated with LcEW, ultrasonication, LcEW combined with ultrasonication, LcEW followed by ultrasonication, and ultrasonication followed by LcEW for 1, 3, and 5 min for each step at room temperature. The highest reduction (2.3 log CFU/g) in total bacteria count (TBC) was resulted from ultrasonication followed by LcEW. Subsequently, the effect of temperature was studied resulting in 2.6 and 3.18 log CFU/g reduction of TBC and Escherichia coli O157:H7 respectively, in 3 min ultrasonication followed by 3 min LcEW treatment at 40 C. This optimum treatment also prevented lettuce from reaching 7.0 log CFU/g in TBC until the end of the 6 day storage at 10 C. Therefore, this newly developed approach may result in improved microbiological safety and enhanced shelf life of produce.



Journal Cover

Microbe(s): Escherichia coli O157:H7


The effect of operating conditions (current density, recirculation flow rate and electrode doping level) on the efficacy of boron-doped diamond (BDD) electrodes to inactivate microorganisms and decrease chemical oxygen demand (COD) was studied in lettuce process wash water with a COD of 725 mg/L and inoculated with a 5-strain cocktail of Escherichia coli O157:H7. Changes in pathogen population, COD, pH, temperature, redox potential, and free and total chlorine were monitored in process wash water during treatments. Considering the specific characteristics of the washing step included in the fresh-cut processing, the disinfection of process wash water should be of fast action. A biphasic with a shoulder model was used to estimate shoulder length (Sl), log-linear inactivation rates (kmax1,kmax2), lowest population (Nf) and highest log reduction (HLR). Current density clearly influenced Sl, and kmax2; recirculation flow rate influenced Sl, kmax1,kmax2 and COD depletion; and doping level influenced Nf. No relationship was observed between inactivation parameters and chlorine concentration. Conditions including high current density (180 mA/cm2), high flow rate (750 l/h) and high doping level (8 000 mol/mol) seems to provide a disinfection efficiency suitable to decrease the chance of bacterial cross contamination in the fresh-cut industries while saving on water consumption and decreasing the amount of wastewater effluents.



Journal Cover

Microbe(s): Escherichia coli O157:H7


The resistance of thirty two strains of Escherichia coli O157:H7 and six major serotypes of non-O157 shiga toxin-producing E. coli (STEC) plus E. coli O104:H4 was tested against electrolyzed oxidizing (EO) water using two different methods; modified AOAC 955.16 sequential inoculation method and minimum inhibitory concentration (MIC). In sequential inoculation method efficacy of sodium hypochlorite was also compared with equal free chlorine (45 mg/L) containing EO water. MIC experiments were conducted for 15 s testing period with free chlorine concentrations of 3.00, 2.50, 2.00, 1.50, 1.00, 0.50 and 0.25 mg/L. The individual strain resistance when tested using the sequential inoculation method was in between 5 and 10 positive tubes, where greater numbers of positive tubes indicate increased resistance of the respective strain to the particular sanitizer. The MIC of individual strains ranged from 0.50 to 1.50 mg/L free chlorine of EO water. In comparison to sodium hypochlorite at same free chlorine concentration EO water was more effective against all STEC cocktails tested. The resistance of STEC cocktails using sequential inoculation method was determined as E. coli O157 O103 O26 0111 O121 045 > O145. The similar pattern of resistance was observed when cocktails were subjected to MIC. The results indicate that different strains of same serotype can differ in their resistance toward an intervention. In addition, EO water treatment that reduces E. coli O157:H7 can equally if not more effectively reduce other non-O157 STEC tested.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Listeria monocytogenes


The objectives of this study were to evaluate the effectiveness of low concentration electrolyzed water (LcEW) and other carcass decontaminants against Escherichia coli O157:H7 and Listeria monocytogenes in fresh pork and to conduct the shelf life/sensory study of pork. Pork samples were inoculated with approximately 5 log cfu/g of afore mentioned pathogens and dip treated with distilled water (DW), aqueous ozone (AO), 3% lactic acid (LA), 3% calcium lactate (CaL), sodium hypochlorite solution (NaOCl), LcEW, strong acidic electrolyzed water (SAEW), and LcEW + CaL for 5 min at room temperature (23 2 C). The greatest reduction (3.0 3.2 log cfu/g) was achieved with LcEW + CaL against pathogens and significantly differed (p < 0.05) from other treatments. This combination also extended shelf life of pork up to 6 days at 4 C storage.



Journal Cover

Microbe(s): Total Microbial Count


Electrolyzed functional water (EFW) possesses broad spectrum antimicrobial activity, and is harmless to the environment and humans. In this research EFW used in germinated brown rice (GBR) production instead of tap water. The effects of the EFW on microbial growth and gamma-aminobutyric acid (GABA) content; and the effects of available chlorine concentration (ACC) and presoaking and ultrasonic pretreatment in alkaline electrolyzed water (AlEW) on GABA accumulation during germination were studied. The results showed that presoaking and ultrasonic treatment of brown rice (BR) in AlEW can significantly enhance the antimicrobial activity of acidic electrolyzed water (AEW), resulting in plate count reductions of 2.89 and 3.75 log cfu/g for strong and slightly AEW treatments, respectively, compared with tap water. The AEW achieved better promotion of GBR growth and GABA accumulation than AlEW. A statistical analysis showed that the GABA content was significantly positively correlated with GBR sprout length. The main finding of this study indicates that AEW is effective at reducing the microbial load on BR and enhances the growth and GABA accumulation of GBR.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Listeria monocytogenes


The effects of hardness and pH of water used to prepare electrolyzed oxidizing (EO) water and bleach solutions on the bactericidal activity of sanitizer prepared from the water were examined. EO water and bleach solutions were prepared with hard water of 0, 50, 100, and 200 mg/l as CaCO3 at pH 5, 6, 7, and 8. Increased water hardness tended to increase free chlorine and oxidation-reduction potential (ORP) and decrease pH of EO water. Chlorine levels also increased with water pH. Water hardness and pH only had minor effect on the pH of bleach solutions. Increasing hardness to 50 mg/l increased antimicrobial effect of EO water against Escherichia coli O157:H7, but reduced when water hardness further increased to 100 mg/l or higher. Water pH had no effect on EO water produced against E. coli O157:H7. Water hardness had no significant effect on bactericidal activity of EO water against Listeria monocytogenes but elevated water pH decreased bactericidal activity of EO water produced against L. monocytogenes. Bleach solution prepared using hard water at 200 mg/l or at pH 7 or higher had significant lower efficacy in inactivating E. coli O157:H7, but had no effect on the inactivation of L. monocytogenes. Results indicate that increasing the hardness or pH of water used to prepare EO water or bleach solutions will decrease the bactericidal activity of sanitizers prepared from the water.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Salmonella enterica, Listeria monocytogenes


Electrochemically activated water (ECAW), also known as electrolyzed water, and ozonized water are typically effective in inactivating bacteria, but their generation typically uses high current and voltage. A few simpler antimicrobial technologies that are also based on the application of a mild electrical current have been recently marketed to food retail and service customers claiming to have sanitizing properties for controlling bacteria. The objective of this study was to determine the sanitizing effect of some of these commercial technologies on Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica and compare them with sterile water, generated ECAW generated with a pilot size electrolyzing unit, and salt solutions sprayed using commercial device sprays. A concentration of 100 mg/L ECAW had sanitizing effects of at least 5 log CFU/mL reductions on liquid culture and more than 4 log CFU/coupon reductions for E. coli O157:H7, L. monocytogenes and Salmonella dried on stainless steel surface, respectively. No bacterial cells were detected by direct plate counting post-ECAW treatment. In contrast, the treatment of liquid cultures with any of the commercial technologies tested resulted in non-significant bacterial cell reductions greater than 0.5 log CFU/mL. Similarly, when cells had been dried on metal surfaces and treated with any of the water generated with those technologies, no reductions were observed. When the manufacturer s instructions were followed, the reduction of cells on surface was largely due to the physical removal by cloth-wiping after water fraction application. These results indicate that treatment with any of these portable technologies had no noticeable antimicrobial activity. These results would be helpful for guiding consumers when choosing a right sanitization to ensure food safety.



Journal Cover

Microbe(s): Listeria monocytogenes


The presence of Listeria monocytogenes in food processing environment is a risk of food contamination by persistent cells due to their ability to attach to stainless steel and other surfaces. We aimed to study biofilms formation of lux-tagged L. monocytogenes EGDe on stainless steel surfaces and their control using neutral electrolyzed water (NEW), where biofilms development was monitored using destructive and non-destructive microscopy techniques. The development of biofilms was monitored for 5 days on stainless steel chips. We used two sources of NEW, commercial (NEW-1) and from a prototype (NEW-2) for treatments of free and biofilm L. monocytogenes EGDe cells. Complete inhibition of L. monocytogenes EGDe free cells was observed after 1 min contact time for both NEW sources, but NEW-1 concentration used (9 mg/L total available chlorine, TAC) was 1.8 times higher. Cells within biofilms were more resistant to NEW compared to planktonic cells. Same concentration of both NEW sources (70 mg/L TAC) exhibited complete inhibition of biofilm cells after 3 min contact time. However, using a sub-lethal dose of 40 mg/L TAC, NEW-2 reduced about 2 log CFU/cm2 biofilm cells while NEW-1 inhibited 0.3 log CFU/cm2 only. Biofilms formation and antagonistic effect of NEW could be visualized by epifluorescence and scanning electron microscopy, revealing significant biofilms structure. The disinfectant effect of NEW may be attributed to the combined antimicrobial effect of available chlorine and high ORP exhibited by its oxidizing compounds. NEW does not promote metal equipment corrosion due to its neutral pH, and is also environmentally friendly.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Listeria monocytogenes


Slightly acidic electrolyzed water (SAEW) is well known as a good sanitizer against foodborne pathogens on fresh vegetables. However, microbial reductions from SAEW treatment are not enough to ensure produce safety. Therefore, it is necessary to improve its antimicrobial efficiency by combining it with other appropriate approaches. This study examined the microbicidal activity of SAEW (pH 5.2-5.5, oxidation reduction potential 500-600 mV, available chlorine concentration 21-22 mg/l) on Chinese cabbage, lettuce, sesame leaf and spinach, four common fresh vegetables in Korea under same laboratory conditions. Subsequently, effects of ultrasonication and water wash to enhance the sanitizing efficacy of SAEW were studied, separately. Finally, an optimized simple and easy approach consisting of simultaneous SAEW treatment with ultrasonication (3 min) followed by water wash (150 rpm, 1 min) was developed (SAEW + US-WW). This newly developed hurdle treatment significantly enhanced the microbial reductions compared to SAEW treatment alone, SAEW treatment with ultrasonication (SAEW + US) and SAEW treatment followed by water wash (SAEW-WW) at room temperature (23 2 C). Microbial reductions of yeasts and molds, total bacteria count and inoculated Escherichia coli O157:H7 and Listeria monocytogenes were in the range of 1.76-2.8 log cfu/g on different samples using the new hurdle approach.



Journal Cover

Microbe(s): Fusarium sp.


The effects of ultrasound (US) and electrolyzed oxidizing (EO) water on postharvest decay of pineapple cv. Phu Lae were investigated using Fusarium sp. isolated from pineapple fruits. The effect of EO water and US irradiation on in vitro growth inhibition of Fusarium sp. was studied. Spore suspensions were treated EO water with free chlorine at 100, 200 and 300 ppm and different frequencies of 108, 400, 700 KHz and 1 MHz US irradiation for 0, 10, 30 and 60 min and incubated at 27 C for 48 h The study showed that all treatments of EO water totally inhibited the spore germination of the fungus. Additionally, US irradiation of 1 MHz for 60 min was the most effective to suppress the spore germination when compared with the control. When the fruits inoculated with Fusarium sp. were washed in EO water at 100 ppm and US irradiation or combination of US and EO water significantly inhibited the decay incidence and prolonged the shelf life of the pineapple for 20 days. Treatments had no effect on fruit quality (weight loss percentage, total soluble solids, titratable acidity, pH, and ascorbic acid). The potential for EO water in combination with US in pineapple handling systems is high, due to marked synergistic effects against fungal decay of decrowned pineapple fruit during storage.



Journal Cover

Microbe(s): Salmonella typhimurium, Listeria monocytogenes, Staphylococcus aureus, Escherichia coli


Salmonella spp. may be found in the nest box of breeder chickens, cold egg-storage rooms at the farm, on the hatchery truck, or in the hatchery environment (5). These bacteria may then be spread to fertilized hatching eggs on the shell or, in some cases, may penetrate the shell and reside just beneath the surface of the eggshell.Research has demonstrated that contamination of raw poultry products with Salmonella spp. may be attributable to cross-contamination in the hatchery from Salmonella infected eggs or surfaces to uninfected baby chicks during the hatching process. Cox et al. (6 and 7) reported that broiler and breeder hatcheries were highly contaminated with Salmonella spp. Within the broiler hatchery, 71 percent of eggshell fragments, 80 percent of chick conveyor belts swabs, and 74 percent of pad samples placed under newly hatched chicks contained Salmonella spp. (6).Cason et al. (4) reported that, although fertile hatching eggs were contaminated with high levels of Salmonella typhimurium, they were still able to hatch. The authors stated that paratyphoid salmonellae do not caadverse health affects to the developing and hatching chick. During the hatching process, Salmonella spp. is readily spread throughout the hatching cabinet due to rapid air movement by circulation fans. When eggs were inoculated with a marker strain of Salmonella during hatching, greater than 80 percent of the chicks in the trays above and below the inoculated eggs were contaminated (4). In an earlier study, Cason et al. (3) demonstrated that salmonellae on the exterior of eggs or in eggshell membranes could be transmitted to baby chicks during pipping.Salmonella may persist in hatchery environments for long periods of time. When chick fluff contaminated with Salmonella was held for 4 years at room temperature, up to 1,000,000 Salmonella cells per gram could be recovered from these samples (12).Researchers have demonstrated a link between cross-contamination in the hatchery and contaminated carcasses during processing. Goren et al. (8) isolated salmonellae from three different commercial hatcheries in Europe and reported that the same serotypes found in the hatcheries could be found on processed broiler chicken carcass skin. Proper disinfection of the hatchery environment and fertile hatching eggs, therefore, is essential for reducing Salmonella on ready-to-cook carcasses.



Journal Cover

Microbe(s): Listeria monocytogenes, Morganella morganii


Listeria monocytogenes and Morganella morganii have been implicated in listeriosis outbreaks and histamine fish poisoning, respectively. Possible sources of contamination of food products include processing equipment, food handlers, and fish smokehouses. Treatment of food preparation surfaces and of whole fish during handling with agents such as, electrolyzed oxidizing (EO) water, could reduce biofilm formation on seafood products and in seafood processing plants. We examined the efficacy of EO water against L. monocytogenes and M. morganii biofilms using the MBEC Assay System (Innovotech Inc.), conveyor belt coupons, and raw fish surfaces. The MBEC Assay System was used to assess the activity of EO water against 24-h biofilms of 90 L. monocytogenes strains and five M. morganii strains. Biofilms were exposed to PBS or EO water for 0 (control), 5, 15, and 30 min. All bacterial isolates were susceptible (reduction of 7 log10CFU) to treatment with EO water for 5 min based on results obtained using this assay system. EO water was used to treat four L. monocytogenes strains and one M. morganii strain attached to conveyor belt coupons and fish surfaces. Three L. monocytogenes strains and one M. morganii strain on belt coupons were reduced by 12.5 log10CFU/cm2 by exposure (5 min) to EO water compared to exposure to sterile distilled water. Strain to strain variability in susceptibility to EO water was evidenced by the fact that numbers of one L. monocytogenes strain were not reduced by EO water treatment of belt surfaces. EO water was not effective against L. monocytogenes and M. morganii on fish surfaces as growth occurred during cold storage. These results suggest that exposure of conveyor belts to EO water for a minimum of 5 min could assist in the removal of some biofilms. Removal of food residue with continuous or intermittent spraying of food processing equipment (e.g., conveyor belts, slicers) could reduce or prevent further biofilm formation. Additional sanitizers must be investigated for activity against bacteria associated with raw fish.



Journal Cover

Microbe(s): aflatoxin


Acidic electrolyzed oxidizing water (AcEW) is prepared by electrolyzing electrolyte solution using an electrolysis apparatus with an ion-exchange membrane. AcEW has a pH < 3.0, a high oxidationreduction potential (ORP) >1000 mV and a high available chlorine concentration (ACC). In this research, the effectiveness of AcEW on decontamination of aflatoxin B1 (AFB1) from naturally contaminated peanuts was investigated. According to our results, after the contaminated peanuts were soaked with AcEW solution (the ratio of liquid to solid was 5:1 (v/m)) for 15 min at room temperature, the content of AFB1 in peanuts decreased from 34.80 g/kg to around 5 g/kg. That is, about 85% AFB1 was decontaminated from contaminated samples. Ambient temperature and soaking time could markedly influence the elimination rate of AFB1 in contaminated peanuts. The elimination of AFB1 was relatively high when the ambient temperature was 25 C or 45 C. And the contaminated peanuts soaked in AcEW for 15 min can effectively decontaminate AFB1. In addition, the nutrition of peanuts didnt significantly change after treatment including the appearance of color. We also found that high level of ACC is the primary factor in AFB1 elimination. Furthermore, ACC in the form of HClO is probably more efficient than ACC in the form of ClO on AFB1 elimination.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Salmonella enteritidis


Slightly acidic electrolyzed water (SAEW) as a novel antimicrobial agent is generated by electrolysis of dilute hydrochloric acid (HCl) and/or sodium chloride (NaCl) solution in a cell with or without a separating membrane. The ultraviolet absorption spectra were used to determine the concentration of hypochlorous acid (HClO) and hypochlorite ion (ClO ) in SAEW generated by four different methods and their bactericidal efficiency for inactivation of Escherichia coli O157:H7 and Salmonella enteritidis was evaluated. During the production of equivalent available chlorine in SAEW, more HClO was produced by electrolysis of HCl solution in a non-membrane generator and mixing the acid and alkaline electrolyzed water generated in a generator with membrane, compared with the methods of adding HCl to neutral electrolyzed water (NEW) and electrolyzing the mixture of NaCl and HCl solution in a non-membrane cell. At the 10 mg/L available chlorine concentration, SAEW produced by the methods with more HClO generation had significantly higher (p<0.05) bactericidal efficiency for inactivation of both pathogens.



Journal Cover

Microbe(s): Listeria monocytogenes


The objective of this study was to develop a model of the growth of Listeria monocytogenes in pork untreated or treated with low concentration electrolyzed water (LcEW) and strong acid electrolyzed water (SAEW), as a function of temperature. The experimental data obtained under different temperatures (4, 10, 15, 20, 25, and 30 C) were fitted into the modified Gompertz model to generate the growth parameters including specific growth rate (SGR) and lag time (LT) with high coefficients of determination (R2 >0.97). The obtained SGR and LT were employed to develop square root models to evaluate the effects of storage temperature on the growth kinetics of L. monocytogenes in pork. The values of bias factor (0.924-1.009) and accuracy factor (1.105-1.186), which were regarded as acceptable, demonstrated that the obtained models could provide good and reliable predictions and be suitable for the purpose of microbiological risk assessment of L. monocytogenes in pork.



Journal Cover

Microbe(s): Escherichia coli


The food industry has recognized electrolyzed oxidizing water (EOW) as a promising alternative decontamination technique. However, there is not a consensus about the sanitizing mechanism of EOW. In this study, we evaluated the disinfection efficacy of different types of EOW on Escherichia coli. Based on the hypothesis of hydroxyl radicals existing in EOW, in the present study, the hydroxyl radicals existed in slightly acidic electrolyzed water (SAEW) and acidic electrolyzed water (AEW) diluted to different levels were detected quantitatively. An ultraviolet (UV) spectrophotometer was used to scan EOW with different pH values. Accounting for the results of UV scanning to EOW with different pH value and the disinfection efficacy of different types of EOW, it can be concluded that considering the lower chlorine concentration of EOW compared with traditional chlorine disinfectants, the existing form of chlorine compounds rather than the hydroxyl radicals played important role in the disinfection efficacy of EOW.



Journal Cover

Microbe(s): Escherichia coli, Listeria innocua


The effects of various sanitizers on the viability and cellular injury to structures of Escherichia coli and Listeria innocua were investigated. A food grade organic acidic formulation (pH 2.5) and acidic, neutral, and basic electrolyzed water [AEW (pH 2.7, oxidation reduction potential; ORP: 1100 mV, free available chlorine; FAC: 150 ppm), NEW (pH 6.9, ORP: 840 mV, FAC: 150 ppm), BEW (pH 11.6, ORP: 810 mV)] were used to treat E. coli and L. innocua cells. After 10 min of exposure to the sanitizers, changes to the bacterial numbers and cell structures were evaluated by plate counting and transmission electron microscopy (TEM), respectively. It was concluded from the results that the sanitizers reduced the E. coli cells between 2 and 3 log CFU/mL. Except for the BEW treatment, reductions in L. innocua population were greater (>1 log CFU/mL) than that of E. coli for all treatments. Data from the TEM showed that all sanitizers caused changes to the cell envelope and cytoplasm of both organisms. However, smaller changes were observed for L. innocua cells. Decrease in the integrity of the cell envelope and aggregation of the cytoplasmic components appeared to be mainly because of exposure to the sanitizers. The organic acid formulation and AEW were the most effective sanitizers against bacterial cells, indicating that penetration of acidic substances effectively caused the cell inactivation.



Journal Cover

Microbe(s): E. coli O157:H7


Increased interest in blueberries due to their nutritional and health benefits has led to an increase in consumption. However, blueberries are consumed mostly raw or minimally processed and are susceptible to microbial contamination like other type of fresh produce. This study was, therefore, undertaken to evaluate the efficacy of electrostatic spray of electrolyzed oxidizing (EO) water, UV light, ozone, and a combination of ozone and UV light in killing Escherichia coli O157:H7 on blueberries. A 5-strain mixture of E. coli O157:H7 were inoculated on the calyx and skin of blueberries and then subjected to the treatments. Electrostatic EO water spray reduced initial populations of E. coli O157:H7 by only 0.13 to 0.24 log CFU/g and 0.88 to 1.10 log CFU/g on calyx and skin of blueberries, respectively. Ozone treatment with 4000 mg/L reduced E. coli O157:H7 by only 0.66 and 0.72 log CFU/g on calyx and skin of blueberries, respectively. UV light at 20 mW/cm2 for 10 min was the most promising single technology and achieved 2.14 and greater than 4.05 log reductions of E. coli O157:H7 on the calyx and skin of blueberries, respectively. The combination treatment of 1 min ozone and followed by a 2 min UV achieved more than 1 and 2 log additional reductions on blueberry calyx than UV or ozone alone, respectively.



Journal Cover

Microbe(s): Escherichia coli, Listeria innocua


The effectiveness of neutral electrolyzed water (NEW) to sanitize cutting boards used for food preparation was investigated. Cutting boards made of hardwood and bamboo were inoculated with Escherichia coli K12 and Listeria innocua, dried for 1 h, washed, rinsed and sanitized with NEW, sodium hypochlorite (NaClO) solution, or tap water (control). After each washing protocol, surviving bacterial populations were determined. Results showed that both NEW and NaClO sanitizing solutions produced similar levels of bacterial reductions. In manual washing, the population reductions by NEW and NaClO were 3.4 and 3.6 log10 CFU/100 cm2 for E. coli, and 4.1 and 3.9 log10 CFU/100 cm2 for L. innocua, respectively. In the automatic washing, the reductions by NEW and NaClO were 4.0 and 4.0 log10 CFU/100 cm2 for E. coli, and 4.2 and 3.6 log10 CFU/100 cm2 for L. innocua, respectively. No significant differences (P > 0.05) were observed in surviving bacteria counts when comparing board material types.



Journal Cover

Microbe(s): Fusarium graminearum


Fusarium Head Blight (FHB), caused by a blend of Fusarium species, is a destructive fungal disease of wheat and other small grain cereals. FHB has become an important issue in food and feed industry. Moreover, the majority of FHB pathogens have the ability to synthesize a range of mycotoxins. Although several physical and chemical control measures can be taken to control these fungi in the field, research is needed to provide new techniques for control during storage and transport of cereals. Mounting evidence shows that electrolyzed oxidizing water (EOW) has antimicrobial activity and might be a useful alternative for conventional control measures. The objective of the present work, was to investigate the influence of EOW on outgrowth and germination of Fusarium spp. and deoxynivalenol (DON) production. Both an in vitro and in vivo approach were pursued. In a first approach, a screening of the main FHB causing species was conducted. Secondly, the effect of EOW on Fusarium graminearum and the effect on DON biosynthesis was investigated using a trichothecene knockout mutant. These experiments showed an increase in DON levels upon sub lethal amendments of EOW to F. graminearum spores. In addition, the reactive oxygen species H2O2 was shown to govern this induction. Finally, the work was validated on a laboratory scale via an in vivo assay using wheat grains in which the Fusarium outgrowth was measured. The present work demonstrates that EOW has potential to control Fusarium spp. in wheat grains during transport and storage although sub lethal concentrations can result in increased DON biosynthesis.



Journal Cover

Microbe(s): (Listeria monocytogenes, Vibrio parahaemolyticus


The objective of this study was to evaluate physicochemical properties and bactericidal activities of acidic electrolyzed water (AEW) used or stored at different temperatures on shrimp. Three independent experiments were carried out. The first experiment was to evaluate the physicochemical properties and bactericidal activities of AEW used at three different temperatures (4, 20, 50 C) against food-borne pathogens (Listeria monocytogenes and Vibrio parahaemolyticus) contamination on cooked shrimp at 1 or 5 min; the second one was to monitor the bactericidal activity of AEW used at two temperatures (20, 50 C) against total aerobic bacteria on raw shrimp at 5 min by conventional plate count method and PCR DGGE method; the last one was to examine the physicochemical properties and bactericidal activities of AEW (AEW1, AEW2) stored at two temperatures ( 18, 25 C) for 30 d against total aerobic bacteria on raw shrimp at 2 min. Results showed that AEW used at 50 C showed the best bactericidal activity, leading to a log reduction of 3.11 for V. parahaemolyticus, 1.96 for L. monocytogenes and 1.44 for total aerobic bacteria at 5 min, respectively. Conventional plate count and PCR DGGE (denaturing gradient gel electrophoresis) study further suggested that the bactericidal activity of AEW used at 50 C was higher than at 20 C. The loss of bactericidal activity of AEW stored at 18 C was less than that of stored at 25 C, and the ORP and ACC decreased more slowly than those of stored at 25 C. However, the ORP and ACC of AEW used at 50 C showed a remarkably faster decrease than that of used at 20 C. We suggest using AEW at 50 C to enhance bactericidal activity and storing at 18 C to keep the content of ACC and the bactericidal activity.



Journal Cover

Microbe(s): Listeria monocytogenes


All food processing surfaces are potential sites for biofilm formation of foodborne pathogens, which may result in increased virulence and better adaptation to survival in foods. This study was aimed to evaluate the effect of two antimicrobials, neutral electrolyzed water (NEW) and nisin, and their combination, on Listeria monocytogenes Scott A biofilms formed on glass and stainless steel surfaces. We also examined the effects of sub-lethal doses of NEW on listeriolysin O (LLO) activity from free and biofilm listerial cells. Coupons inoculated with L. monocytogenes cells were used to produce biofilms by incubation for four days at 37 C. An orthogonal experimental design with two replicates was used to test the effect of four factors on biofilm population. The factors were antimicrobial agents: NEW (65 ppm), nisin (6976 IU/per coupon), and their combination; temperature: 20 C and 37 C; contact time: 5, 10, 20 and 45 min; and type of material: glass or stainless steel. Antimicrobial compounds and exposure time significantly affected L. monocytogenes populations in biofilms from both surfaces. A bactericidal effect was shown by NEW on free listerial cells at 30 ppm for 0.5 min of exposure, regardless treatment temperature. Same effect was observed on listerial biofilms at 65 ppm or higher concentrations, after 10 min contact time. A sub-lethal concentration of NEW acting on listerial biofilms resulted in an increased LLO activity, while non-treated biofilms exhibited a reduced activity, but higher than that found for free cells. The use of NEW as a sanitizer may be effective in reducing bacterial contamination. In addition because of its safety, which would benefit the food industry and its environmental friendliness, NEW may be of significant use in the food industry.



Journal Cover

Microbe(s): Listeria monocytogenes, Salmonella Typhimurium


Anticmicrobial effect of slightly acidic low concentration electrolyzed water (SlALcEW) and strong acidic electrolyzed water (StAEW) on fresh chicken breast meat was evaluated in this study. Meat samples each of 10 0.2 g in weight and 2.5 2.5 cm2 in size were experimentally inoculated with Listeria monocytogenes (ATCC 19115) and Salmonella Typhimurium (ATCC 14028) and subjected to dipping treatment (22 2 C for 10 min) with SlALcEW and StAEW. Shelf-life study was conducted for inoculated and noninoculated meat samples treated with SlALcEW and StAEW at storage temperatures of 5, 15, and 25 C. Dipping treatment with electrolyzed water significantly (P < 0.05) reduced the background and inoculated pathogens compared to untreated controls. The reduction of 1.5 to 2.3 log CFU/g was achieved by SlALcEW and StAEW against background flora, L. monocytogenes and Salmonella Typhimurium. There was no significant difference (P > 0.05) between the SlALcEW and StAEW treatments efficacy. Comparing treated samples to untreated controls showed that SlALcEW and StAEW treatments extended the shelf life of chicken meat at different temperatures with marginal changes of sensory quality. Although SlALcEW and StAEW treatments showed similar antimicrobial effects but SlALcEW was more beneficial in practical application for its semineutral pH and low chlorine content.



Journal Cover

Microbe(s): Vibrio parahaemolyticus


The objective of this study was to investigate the efficacy of acidic electrolyzed water (AEW) against Vibrio parahaemolyticus on shrimp. The shrimp was initially inoculated with V. parahaemolyticus(7 8 log CFU/g), and treated with AEW (AEW1 containing 51 mg/L of chlorine or AEW2 containing 78 mg/L of chlorine) or organic acids (2% AA and 2%LA) for 1 min or 5 min under different treated conditions. The effect of AEW was better than that of organic acids, the number of survival V. parahaemolyticus cells on shrimp was reduced by 0.9 log CFU/g after treatment for 5 min with AEW without vibration, while 1.0 log CFU/g bacteria cells reduced with vibration. No significant difference (p > 0.05) was observed between AEW and organic acids in the bactericidal activity with or without vibration. The effective order of temperatures on bactericidal activities of AEW was 50 C > 20 C > 4 C, and a 3.1 log CFU/g reduction of V. parahaemolyticus cells on shrimp was detected with treatment of AEW at 50 C. Mild heat greatly enhanced efficacy of electrolyzed water against V. parahaemolyticus. Basic electrolyzed water (BEW) (50 C) pretreatment combined with AEW (50 C) treatment remarkably reduced bacterial cells by 5.4 log CFU/g on shrimp after treatment for 5 min. There was a significant change in physicochemical properties (pH, ORP, ACC) of AEW, after it was used to wash shrimp (P < 0.05). This study suggests that BEW (50 C) pretreatment followed by AEW (50 C) treatment could be a possible method to effectively control V. parahaemolyticus contamination on shrimp.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Listeria monocytogenes


Low concentration electrolyzed water (LcEW) has been proved to be an effective sanitizer against pathogens in cell suspensions as well as pathogens and spoilage organisms attached to vegetables, poultry and meat. In this study, effect of current, electrolysis time and salt concentration on physical properties (pH, ORP and ACC) and inactivation efficacy of LcEW was monitored. Pure cultures of Escherichia coli O157:H7 and Listeria monocytogenes were prepared and exposure treatment was performed for bacteria inactivation study in cell suspensions at room temperature (23 2 C). Our results showed increased reduction of both pathogens with the increase in current. Changes of current also affected the ACC, pH and ORP values of the tested solution. Values of ACC, pH and ORP were increased with the increase in current. Log reduction of 4.9 5.6 log CFU/mL for both pathogens was achieved when the current was increased from 1.15 to 1.45 A. Electrolysis time and percent of salt concentration also influenced the physical properties of LcEW. Stability of LcEW was also investigated under different conditions and it was observed that LcEW produced with increased electrical current was more stable during storage. Therefore, current might influence the properties and sanitizing effect of LcEW.



Journal Cover

Microbe(s): Escherichia coli O157:H7


The objective of this study was to evaluate the efficacy of slightly acidic electrolyzed (SAEO) water in killing or removing Escherichia coli O157:H7 on iceberg lettuce and tomatoes by washing and chilling treatment simulating protocols used in food service kitchens. Whole lettuce leaves and tomatoes were spot-inoculated with 100 L of a mixture of 5 strains of E. coli O157:H7. Washing lettuce with SAEO water for 15 s reduced the pathogen by 1.4 to 1.6 log CFU/leaf, but the treatments did not completely inactivate the pathogen in the wash solution. Increasing the washing time to 30 s increased the reductions to 1.7 to 2.3 log CFU/leaf. Sequential washing in SAEO water for 15 s and then chilling in SAEO water for 15 min also increased the reductions to 2.0 to 2.4 log CFU/leaf, and no cell survived in chilling solution after treatment. Washing tomatoes with SAEO water for 8 s reduced E. coli O157:H7 by 5.4 to 6.3 log CFU/tomato. The reductions were increased to 6.6 to 7.6 log CFU/tomato by increasing the washing time to 15 s. Results suggested that application of SAEO water to wash and chill lettuce and tomatoes in food service kitchens could minimize cross-contamination and reduce the risk of E. coli O157:H7 present on the produce.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Listeria monocytogenes


The objective of this study was to determine the synergistic effect of alkaline electrolyzed water and citric acid with mild heat against background and pathogenic microorganisms on carrots. Shredded carrots were inoculated with approximately 6 7 log CFU/g of Escherichia coli O157:H7 (932, and 933) and Listeria monocytogenes (ATCC 19116, and 19111) and then dip treated with alkaline electrolyzed water (AlEW), acidic electrolyzed water (AcEW), 100 ppm sodium hypochlorite (NaOCl), deionized water (DaIW), or 1% citric acid (CA) alone or with combinations of AlEW and 1% CA (AlEW + CA). The populations of spoilage bacteria on the carrots were investigated after various exposure times (1, 3, and 5 min) and treatment at different dipping temperatures (1, 20, 40, and 50 C) and then optimal condition (3 min at 50 C) was applied against foodborne pathogens on the carrots. When compared to the untreated control, treatment AcEW most effectively reduced the numbers of total bacteria, yeast and fungi, followed by AlEW and 100 ppm NaOCl. Exposure to all treatments for 3 min significantly reduced the numbers of total bacteria, yeast and fungi on the carrots. As the dipping temperature increased from 1 C to 50 C, the reductions of total bacteria, yeast and fungi increased significantly from 0.22 to 2.67 log CFU/g during the wash treatment (p 0.05). The combined 1% citric acid and AlEW treatment at 50 C showed a reduction of the total bacterial count and the yeast and fungi of around 3.7 log CFU/g, as well as effective reduction of L. monocytogenes (3.97 log CFU/g), and E. Coli O157:H7 (4 log CFU/g). Combinations of alkaline electrolyzed water and citric acid better maintained the sensory and microbial quality of the fresh-cut carrots and enhanced the overall shelf-life of the produce.



Journal Cover

Microbe(s): Escherichia coli, Bacillus subtilis


The efficacy of slightly acidic electrolyzed water (SAEW) for reducing microbial contamination on fresh-cut cilantro was investigated in this study. The impacts of SAEW on the microbes of cilantro samples inoculated with two kinds of bacteria (Escherichia coli O78 and Bacillus subtilis 1.1849) were evaluated in comparison with NaClO solution and acidic electrolyzed water (AEW). Dipping with AEW, SAEW and NaClO solutions for 5 min resulted in a reduction in populations of E. coli O78 from 6.38 to 4.93, 3.89 and 4.88 log10 cfu/g and in populations of B. subtilis from 6.52 to 5.02, 4.98, 4.63 log10 cfu/g, respectively, The similar results were found that the populations on cilantro inoculated the mixture of two microbes of E. coli O78 treated with AEW, SAEW and NaClO solutions decreased to 4.15, 3.99, 5.10 log10 cfu/g, respectively, and the populations of B. subtili on cilantro decreased to 5.08,4.97,4.82 log10 cfu/g, respectively. The efficacies of SAEW wash in reducing natural micro flora on fresh-cut cilantro were studied. The results showed SAEW had strong disinfection ability to reduce the microbe population of fresh-cut cilantro and could be an alternative of AEW and NaClO solutions.



Journal Cover

Microbe(s): Total Microbial Count


The efficacy of slightly acidic electrolyzed water (SAEW, 20 mg/l of available chlorine) and sodium hypochlorite solution (NaClO, 120 mg/l of available chlorine) used as potential sanitizers for fresh-cut cucumbers was evaluated. SAEW with a near-neutral pH value (5.0 to 6.5) and lower available chlorine concentration (ACC) had an equivalent or higher efficiency to reduce microbial counts on the cucumbers compared to NaClO solution. A 5-minute treatment of SAEW and NaClO solution significantly reduced the indigenous aerobic bacteria on cucumbers by 1.62 and 1.51 log10 CFU/g, and molds and yeasts by 1.35 and 1.12 log10 CFU/g, respectively (P < 0.05). The reduction of microbial counts on cucumbers by tap water was markedly less than that by SAEW and NaClO solution (P < 0.05). Results indicate that SAEW provides an alternative technique for sanitization of fresh-cut vegetables with environmentally friendly broad spectrum microbial decontamination.



Journal Cover

Microbe(s): Listeria monocytogenes


Electrolyzed oxidizing water has been estimated that it has strong bactericidal activity and has been widely used as a disinfectant for inactivating microbial organisms. The combined effects of temperature (15 35C), chlorine concentration of electrolyzed oxidizing water (30 70 ppm) and treatment time (1 5 min) on the reduction of Listeria monocytogenes in lettuce were investigated. Reductions of 1.39 2.79 log10 cfu/g were observed in different combinations of the three factors. Also, a quadratic equation for L. monocytogenes inactivation kinetic was developed by multiple regression analysis using response surface methodology. The predicted values were shown to be significantly in good agreement with experimental values because the adjusted determination coefficient (inline image) was 0.9578 and the level of significance was P < 0.0001. Besides, average mean deviation (E%), bias factor (Bf) and accuracy factor (Af), which are validation indicators of the model were 0.0218, 1.0003 and 1.0220, respectively. Thus, predicted model showed a good correlation between the experimental and predicted values, indicating success at providing reliable predictions of L. monocytogenes growth in lettuce.



Journal Cover

Microbe(s): Salmonella enterica, Escherichia coli O157:H7, Listeria monocytogenes


This study was intended to evaluate the bactericidal effect of electrolyzed oxidizing water (EOW) and chlorinated water on populations of Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes inoculated on avocados (Persea americana var. Hass). In the first experiment, inoculated avocados were treated with a water wash applied by spraying tap water containing 1 mg/liter free chlorine for 15 s (WW); WW treatment and then spraying sodium hypochlorite in water containing 75 mg/liter free chlorine for 15 s (Cl75); WW treatment and then spraying alkaline EOW for 30 s (AkEW) and then spraying acid EOW (AcEW) for 15 s; and spraying AkEW and then AcEW. In another experiment, the inoculated avocados were treated by spraying AkEW and then AcEW for 15, 30, 60, or 90 s. All three pathogen populations were lowered between 3.6 and 3.8 log cycles after WW treatment. The application of Cl75 did not produce any further reduction in counts, whereas AkEW and then AcEW treatment resulted in significantly lower bacterial counts for L. monocytogenes and E. coli O157:H7 but not for Salmonella. Treatments with AkEW and then AcEW produced a significant decrease in L. monocytogenes, Salmonella, and E. coli O157:H7 populations, with estimated log reductions of 3.9 to 5.2, 5.1 to 5.9, and 4.2 to 4.9 log CFU/cm , respectively. Spraying AcEW for more than 15 s did not produce any further decrease in counts of Salmonella or E. coli O157:H7, whereas L. monocytogenes counts were significantly lower after spraying AcEW for 60 s. Applying AkEW and then AcEW for 15 or 30 s seems to be an effective alternative to reduce bacterial pathogens on avocado surfaces.



Journal Cover

Microbe(s): Total Microbial Count


The effects of 40, 70 or 100 mg L 1 free chlorine neutral and acidic electrolyzed water (NEW and AEW) during the washing and disinfection step, on quality attribute changes during shelf life of fresh-cut mizuna baby leaves, were studied. Physiological, nutritional, enzymatic, sensory, and microbial changes throughout 11 days at 5 C were monitored. Results were compared to those reached with a conventional industrial treatment of 100 mg L 1 NaClO at pH 6.5 and with a control washing with deionised water. Both NEW and AEW showed an inhibitory effect on natural microflora growth and retained the main quality attributes. Total chlorophyll content was preserved after shelf life. Initial total phenolic contents ranged between 1868 and 2518 mg CAE kg 1 fw for AEW 40 and AEW 100 treatments respectively and slightly increased throughout shelf life. In contrast, after shelf life the total antioxidant activity recorded on the processing day decreased around 35%. Throughout shelf life EW induced an increase in catalase activity while superoxide dismutase activity decreased. Scanning electron microscopy of the leaves showed that neither NEW nor AEW affected their surface structure. To the best of our knowledge, the effects of NEW and AEW on bioactive quality parameters, as well as on antioxidant enzyme activities for fresh-cut baby leaves are first reported here. EW provides an alternative sanitizing technique to NaClO for maintaining the quality of fresh-cut mizuna baby leaves up to 11 days at 5 C.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Listeria monocytogenes, Salmonella Typhimurium, Bacillus cereus


In this study we investigated the effects of low concentration electrolyzed water (LcEW) and several other sanitizers (strong acid electrolyzed water (SAEW), aqueous ozone (AO), 1% citric acid (CA) and sodium hypochlorite solution (NaOCl)) on the inactivation of natural microflora (total aerobic bacteria counts (TBC) and yeasts and moulds (YM)) and foodborne pathogens (Escherichia coli O157:H7, Listeria monocytogenes, Salmonella Typhimurium and Bacillus cereus) on oyster mushroom. The effects of temperature and treatment time on the antimicrobial activity of LcEW to reduce the populations of foodborne pathogens were also determined. LcEW showed the strongest bactericidal efficacy among all the sanitizers on TBC, YM and pathogens by reductions of 1.35, 1.08 and 1.90 2.16 log CFU/g after 3 min treatment at room temperature (23 2 C), respectively. There was no significant difference between the antimicrobial effects of LcEW and SAEW (P > 0.05). Among those sanitizers, their relative influence of inactivation was LcEW > NaOCl > CA > AO.



Journal Cover

Microbe(s): Total Microbial Count


The efficacy of mildly heated, slightly acidic electrolyzed water (mildly heated SlAEW) at 45 C for disinfection and maintenance of sliced carrot quality was studied. Mildly heated SlAEW (23 mg/L available chlorine, pH at 5.5) was used to treat the carrots, followed by rinsing with tap water (TW) for 2 min at 4 C, and its effectiveness as a disinfectant was evaluated. The physicochemical properties of the carrots were determined and a comparison was made between treatments with SlAEW at room temperature (18 C), TW at 18 C and mildly heated TW at 45 C. Results show that total aerobic bacteria, mold and yeast populations were significantly lower after mildly heated SlAEW treatment. Mildly heated SlAEW treatment reduced the total aerobic bacteria by 2.2 log10 CFU/g and molds and yeasts by >1.9 log10 CFU/g compared with TW treatment. Color indices of hue and chroma of sample surfaces were not affected by mildly heated SlAEW treatment and there were insignificant differences in hardness or the ascorbic acid and -carotene contents of sliced carrots. The use of mildly heated SlAEW is suggested as an effective disinfection method for fresh cut carrots with low available chlorine.



Journal Cover

Microbe(s): Total Microbial Count


Electrolyzed functional water possesses a wide variety of antimicrobial activities. Electrolyzed functional water, which used to take place of tap water in producing mung bean sprouts, was studied in this paper. The results showed that electrolyzed water can not only reduce the quantity of microorganism on the surface of mung bean sprouts, but also promote the growth of sprouts. Further research showed that electrolyte leakage rate of mung bean soaked in electrolyzed water was the lowest, while the catalase s activity of mung bean soaked in electrolyzed water was the highest. All of these contribute to the high activity of mung bean.



Journal Cover

Microbe(s): Escherichia coli, Listeria innocua, Salmonella choleraesuis


Chlorine (sodium hypochlorite solution) is the most common disinfectant used in the fresh-cut industry, however, environmental and health risks related to its use have resulted in a need to find new sanitizers. Electrolyzed water (EW) is a promising alternative, showing a broad spectrum of microbial decontamination. In this study the efficacy of acidic electrolyzed water (AEW) and neutral electrolyzed water (NEW) as disinfectants of apple slices inoculated with Escherichia coli, Listeria innocua or Salmonella choleraesuis, individually or in a mixture, were compared to that of sodium hypochlorite solution and distilled water. Apple slices were inoculated with a 107 cfu/mL suspension of the pathogens and treated with diluted electrolyzed water. Bactericidal activity of washing treatments was assessed after 30 min and after storage for 5 days at 4 C. AEW and NEW disinfection efficacy was compared to that of washings with sodium hypochlorite at the same free chlorine concentration and with distilled water. AEW diluted to 100 mg/L of free chlorine was the treatment with the highest bactericidal activity in all tested conditions (reductions obtained ranged from 1.2 to 2.4 log units) followed by NEW and AEW at 100 and 50 mg/L of free chlorine respectively. In general these treatments were equal or more effective than sodium hypochlorite washings at 100 mg/L of free chlorine. The effect of the different sanitizer washings when pathogens where in a mixture was similar to that which occurred when pathogens were individually inoculated. The effectiveness of all washings slightly decreased when apple slices were stored for 5 days at 4 C.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Salmonella enteritidis


High microbial populations on mung beans and its sprouts are the primary reason of a short shelf life of these products, and potentially present pathogens may cause human illness outbreak. The efficiency for inactivating Escherichia coli O157:H7 (E. coli O157:H7) and Salmonella enteritidis (S. enteritidis), which were artificially inoculated on mung bean seeds and sprouts, by means of slightly acidic electrolyzed water (SAEW, pH 5.0 to 6.5) generated through electrolysis of a mixture of NaCl and hydrochloric acid solution in a non-membrane electrolytic chamber, was evaluated at the different available chlorine concentrations (ACCs, 20-120 mg/l) and treatment time (3-15 min), respectively. The effect of SAEW treatment on the viability of seeds was also determined. Results indicate that the ACC had more significant effect on the bactericidal activity of SAEW for reducing both pathogens on the seeds and sprouts compared to treatment time (P < 0.05). The seeds and sprouts treated with SAEW at ACCs of 20 and 80 mg/l resulted in a reduction of 1.32-1.78 log10 CFU/g and 3.32-4.24 log10 CFU/g for E. coli, while 1.27-1.76 log10 CFU/g and 3.12-4.19 log10 CFU/g for S. enteritidis, respectively. The germination percentage of mung bean seeds was not significantly affected by the treatment of SAEW at an ACC of 20 mg/l for less than 10 min (P > 0.05). The finding of this study implies that SAEW with a near-neutral pH value and low available chlorine is an effective method to reduce foodborne pathogens on seeds and sprouts with less effects on the viability of seeds.



Journal Cover

Microbe(s): Escherichia coli, Salmonella spp.


The sanitization efficacy of slightly acidic electrolyzed water (SAEW) against food pathogens on selected fresh ready-to-eat (RTE) vegetables and sprouts was evaluated and compared to sodium hypochlorite (NaOCl) solution. RTE vegetables and sprouts were dip-inoculated with Escherichia coli (E. coli) and Salmonella spp. and dip-treated with SAEW, NaOCl solution for 5 min. SAEW treatment significantly (p < 0.05) reduced the total aerobic mesophilic bacteria from Chinese celery, lettuce and daikon sprouts by 2.7, 2.5 and 2.45 log10CFU/g, respectively relative to un-treated. Pathogens were significantly (p < 0.05) reduced from Chinese celery, lettuce and daikon sprouts by 2.7, 2.8 and 2.8 log10CFU/g (E. coli) and 2.87, 2.91 and 2.91 log10CFU/g (Salmonella spp.), respectively following a SAEW treatment. SAEW and NaOCl solution showed no significant sanitization difference (p > 0.05). Results demonstrate that SAEW at low chlorine concentration and a near neutral pH is a potential non-thermal food sanitizer that could represent an alternative to NaOCl solution and would reduce the amount of free chlorine used in fresh-cut vegetables industry, since the same microbial reduction as NaOCl solution is obtained.



Journal Cover

Microbe(s): Fungi, Bacillus subtilis


A study was carried out on the disinfection efficiency of electrolyzed oxidizing water (EOW) on spores of Bacillus subtilis var. niger. The results showed a remarkable fungicidal rate of 100% after 20 min duration of 191 mg/L active available chlorine (ACC). The disinfection effect was improved with increased ACC or prolonged disinfection time, while organic interferents exerted a strong concentration-dependent inhibition against the disinfection. The disinfection mechanism was also investigated at bio-molecular level. EOW decreased dehydrogenase activity, intensified membrane permeability, elevated suspension conductivity, and caused leakage of intracellular K+, proteins, and DNA, indicating a damage of cell walls and membranes. Effects of EOW on microbiological ultra-structures were also verified by transmission electronic microscopy (TEM) images, showing that EOW destroyed protective barriers of the microbe and imposed some damages upon the nucleus area.



Journal Cover

Microbe(s): Escherichia coli


Electrolyzed seawater (ESW) is reportedly an effective disinfectant for aquaculture equipment becaof its simple mechanism and cost effectiveness. The potential of electrolyzed seawater for oyster depuration was studied using different experiments. The first was determination of chlorine tolerance of oysters. Second was effectiveness of ESW against Escherichia coli in artificially contaminated oysters and third was effectiveness of ESW against E. coli in naturally contaminated oysters from two culture farms. Tolerance of oysters for Chlorine was studied by scanning electron microscopy (SEM) and histological observation demonstrating that more than 0.5 mg/L of chlorine was toxic while 0.2 mg/L was safe for the oysters. Oysters artificially contaminated with E. coli (230 MPN/100 mL, 16.5 C for 15 h) were depurated for 6, 24, and 48 h using ESW and UV irradiated seawater. E. coli counts in artificially contaminated oysters decreased to below the detection limit (30 E. coli MPN/100 g) after depuration with ESW for 24 h or UV irradiated seawater for 6 h. In experiments on naturally contaminated oysters E. coli counts decreased to below detection limits after depuration with ESW for 24 h. From these results, electrolysis of seawater is a useful method for post harvest elimination of E. coli from oysters.



Journal Cover

Microbe(s): Staphylococcus aureus


The objective of this study was to investigate the combined effect of temperature (1535C), pH (3-9), and dipping time (15 min) on the inactivation of Staphylococcus aureus in broth treated with low concentration electrolyzed water (LcEW). Reductions of 1.447.12 log CFU/mL were observed in different combinations of the 3 factors. Also, a quadratic equation for S. aureus inactivation kinetic was developed by multiple regression analysis using response surface methodology. The predicted values were shown to be significantly in good agreement with experimental values as a result of the level of significance was p<0.0001. Besides, the developed model was validated by fitting with literature data and the results showed that the predictions had a good agreement with the observed data with a satisfied determination of coefficient (R2=0.963).



Journal Cover

Microbe(s): Escherichia coli, Salmonella


The sanitization efficacy of slightly acidic electrolyzed water (SAEW) against food pathogens on 2.7, 2.8 and 2.8 log10CFU/g (E. coli) and 2.87, 2.91 and 2.91 log10CFU/g (Salmonella spp.), respectively following a SAEW treatment. SAEW and NaOCl solution showed no significant sanitization difference (p > 0.05). Results demonstrate that SAEW at low chlorine concentration and a near neutral pH is a potential non-thermal food sanitizer that could represent an s industry, since the same microbial reduction as NaOCl solution is obtained.



Journal Cover

Microbe(s): Total Microbial Count, Fungi, Yeast, Mold


The efficacy of mildly heated, slightly acidic electrolyzed water (mildly heated SlAEW) at 45 C for disinfection and maintenance of sliced carrot quality was studied. Mildly heated SlAEW (23 mg/L available chlorine, pH at 5.5) was used to treat the carrots, followed by rinsing with tap water (TW) for 2 min at 4 C, and its effectiveness as a disinfectant was evaluated. The physicochemical properties of the carrots were determined and a comparison was made between treatments with SlAEW at room temperature (18 C), TW at 18 C and mildly heated TW at 45 C. Results show that total aerobic bacteria, mold and yeast populations were significantly lower after mildly heated SlAEW treatment. Mildly heated SlAEW treatment reduced the total aerobic bacteria by 2.2 log10 CFU/g and molds and yeasts by >1.9 log10 CFU/g compared with TW treatment. Color indices of hue and chroma of sample surfaces were not affected by mildly heated SlAEW treatment and there were insignificant differences in hardness or the ascorbic acid and -carotene contents of sliced carrots. The of mildly heated SlAEW is suggested as an effective disinfection method for fresh cut carrots with low available chlorine.



Journal Cover

Microbe(s): Botrytis cinerea, Monilinia fructicola


Near neutral (pH 6.36.5) electrolyzed oxidizing water (EO water) has been demonstrated to inactivate fungi in pure culture and to mitigate infection on fruit surfaces. One possible and as effective as a once per week captan/once per week EO treatment. The once per week captan/once per week EO treatment was significantly more effective (P 0.05) than the captan once per week treatment. Dip treatments of strawberries in near neutral EO solutions (50 and 100 ppm TRC pH 6.36.5) did not leave a chlorine residue on the fruit relative to a water dip. The results from this study suggest that near neutral EO solutions could be used to manage infection of B. cinerea on strawberry plants in the field and also as a disinfection solution for harvesting equipment, greenhouses, packing houses and in commercial facilities to prevent or manage infections of B. cinerea and M. fructicola.



Journal Cover

Microbe(s): Escherichia coli K12, Listeria innocua, Pseudomonas putida


This study investigated the efficacy of sanitized ice for the reduction of bacteria in the water collected from the ice that melted during storage of whole and filleted Tilapia fish. Also, bacterial reductions on the fish fillets were investigated. The sanitized ice was prepared by freezing solutions of PROSAN (an organic acid formulation) and neutral electrolyzed water (NEW). For the whole fish study, the survival of the natural microflora was determined from the water of the melted ice prepared with PROSAN and tap water. These water samples were collected during an 8 h storage period. For the fish fillet study, samples were inoculated with Escherichia coli K12, Listeria innocua, and Pseudomonas putida then stored on crushed sanitized ice. The efficacies of these were tested by enumerating each bacterial species on the fish fillet and in the water samples at 12 and 24 h intervals for 72 h, respectively. Results showed that each bacterial population was reduced during the test. However, a bacterial reduction of < 1 log CFU was obtained for the fillet samples. A maximum of approximately 2 log CFU and > 3 log CFU reductions were obtained in the waters sampled after the storage of whole fish and the fillets, respectively. These reductions were significantly (P < 0.05) higher in the water from sanitized ice when compared with the water from the unsanitized melted ice. These results showed that the organic acid formulation and NEW considerably reduced the bacterial numbers in the melted ice and thus reduced the potential for crosscontamination.



Journal Cover

Microbe(s): Total Microbial Count


To study the changes in physicochemical properties of electrolyzed water during storage and its effect on inhibiting bacteria growth in shrimp, a of physicochemical properties, pH values, oxidation-reduction potential (ORP) and available chlorine concentration (ACC) and bacterial inhibition of four types of electrolyzed water on storage day 7, day 14, day 21 and day 30 at two storage conditions, (-182)C and room temperature, were analyzed. And the surviving bacteria population in the solution after electrolyzed water treatment was investigated. The results showed that pH value of most of electrolyzed water progressively increased, while ORP and ACC decreased gradually. The values of pH and ACC of electrolyzed water ice were higher than that of electrolyzed water stored in the room temperature, while ORP of electrolyzed water ice was lower than that of electrolyzed water kept in the room temperature. The bactericidal effect of electrolyzed water was less effective after 30 d of storage than that before storage, and the bactericidal effect of electrolyzed water ice was better than that of electrolyzed water kept in the room temperature. It is suggested that the stored electrolyzed water in solid form holds the content of ACC, and improves the bactericidal capacity for shrimp.



Journal Cover

Microbe(s): Total Microbial Count


For the special efficacy of electrolyzed water and the status that electrolyzed water is less studied on leafy vegetables,in order to provide basis for electrolyzed water used in the cultivation of Chinese cabbage and other leafy vegetables,the effect of soaking Chinese cabbage seeds with electrolyzed water was studied under laboratory conditions.The results showed that pH value of the electrolyzed water was an important factor that affected the Chinese cabbage seeds germination.The acidic electrolyzed water of pH 3.30 could accelerate seeds germinating and raise fresh weight of shoots significantly;strong acidic electrolyzed water and alkaline electrolyzed water would slow down the speed of seeds germination and inhibit both germination rate and fresh weight of shoots;besides,neutral electrolyzed water have no clear effect on germination potential,germination rate and fresh weight of shoots.Preliminary view was that,In addition,the results also showed that 2h of soaking time was appropriate;when soaking time was too short,the electrolyzed water could not have any effect,and soaking too long would have a negative effect on the seeds germination.



Journal Cover

Microbe(s): Escherichia coli O157: H7, Staphylococcus aureus


The use of different available chlorine concentrations (ACCs) of slightly acidic electrolyzed water (SAEW; 0.5 to 30 mg/



Journal Cover

Microbe(s): Escherichia coli O157:H7, Listeria monocytogenes


The efficacy of newly developed low concentration electrolyzed water (LcEW) was investigated to inactivate the pathogens on spinach leaves as a convenient and safe alternative sanitizer and it was compared to other sanitizers. Spinach leaves were inoculated with Escherichia coli O157:H7 and Listeria monocytogenes and dip treated with deionized water (DIW), LcEW, strong acid electrolyzed water (SAEW), aqueous ozone (AO), 1% citric acid (CA) and sodium hypochlorite solution (NaOCl) for 3 min at room temperature (23 +/- 2 C). For all pathogens, the similar pattern of microbial reduction on spinach was apparent with LcEW and SAEW washing. In the present study, it was found that LcEW inactivated, at maximum, 1.64-2.80 log cfu/g and DIW resulted in lowest reduction, 0.31-0.95 log cfu/g of background or pathogenic microflora present on spinach leaves compared to the unwashed control. The findings of this study indicate that LcEW and SAEW did not differ significantly (P > 0.05) in reducing background or pathogenic microflora on spinach and LcEW may be a promising sanitizer for washing vegetables without environmental pollution instead of using electrolyzed oxidizing (EO) water or SAEW.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Listeria monocytogenes, Staphylococcus aureus, Salmonella Typhimurium


Strong acid electrolyzed water (SAEW) has a very limited application due to its low pH value (< 2.7) and corrosive characteristics. Thus, we developed new low concentration electrolyzed water (LcEW). The efficacy of LcEW under various treatment conditions for the inactivation of different foodborne pathogens in pure culture was evaluated and compared with SAEW. The efficiency of LcEW and SAEW for the inactivation of predominant foodborne pathogens (Escherichia coli O157:H7, Listeria monocytogenes, Staphylococcus aureus and Salmonella Typhimurium) with different dipping times (1, 3, 5, 7 and 10 min), pH values (2.5, 4.0, 5.0, 6.0 and 9.0) and temperatures (4, 15, 23, 35 and 50 C) were determined. Reductions of bacterial populations of 1.7 to 6.6 log10 CFU/mL in various treated conditions in cell suspensions were observed after treatment with LcEW and SAEW, compared to the untreated control. Dip washing (1 min at 35 C) of lettuce leaves in both electrolyzed water resulted in 2.5 to 4.0 log10 CFU/g compared to the unwashed control. Strong inactivation effects were observed in LcEW, and no significant difference (p > 0.05) was observed between LcEW and SAEW. The effective form of chlorine compounds in LcEW was almost exclusively hypochlorous acid (HOCl), which has strong antimicrobial activity and leaves no residuals due to the low concentration of residual chlorine. Thus, LcEW could be widely applied as a new sanitizer in the food industry.



Journal Cover

Microbe(s): Total Microbial Count


Pre-treatment steps of fresh produce as Saengshik raw materials are followed by initial clean-up, dipping, primary washing, and cutting. Hypochlorous acid solution was applied in the dipping step to reduce natural microflora. Also, procedures were changed by cutting, dipping and then primary washing, and the efficacy of hypochlorus acid was evaluated. Potatoes, carrots, kales, and angelicas were submerged in water or 100 ppm of hypochlorous acid for 5 min. After initial clean-up, the aerobic plate counts of potatoes, carrots, kales and angelicas were 4.7, 5.3, 5.6, and 5.7 log CFU/g, respectively. When samples were submerged into water, it only reduced the population of natural microflora by 0.2 to 1.1 log CFU/g, whereas when treated with hypochlorous acid, it reduced the population by 0.5 to 2.8 log CFU/g. Reductions of natural microflora in green leafy vegetables were more highly achieved than bulbs such as potatoes and carrots. However, the numbers of natural microflora were increased after cutting step. To control the cross contamination at the cutting process, the process was changed as follows: initial clean-up, cutting, dipping in hypochlorous acid, and then primary washing. It showed effective reduction of the population by 2.3 to 3.2 log CFU/g. Hypochlorous acid solution could be useful as a sanitizer for surface washing of fresh vegetables.



Journal Cover

Microbe(s): Salmonella spp., Escherichia coli


Antimicrobial effect of slightly acidic electrolyzed water (SAEW: pH 5.6 0.1, 20.5 1.3 mg/L available chlorine concentration; ACC) against indigenous aerobic mesophiles and inoculated Escherichia coli and Salmonella spp. on fresh strawberry was assessed. The antimicrobial effect of SAEW was compared with that of strong acidic electrolyzed water (StAEW) and sodium hypochlorite (NaOCl) solution. SAEW effectively reduced total aerobic mesophilic bacteria from strawberries by 1.68 log10CFU/g and was not significantly different from that ofNaOCl solution (p > 0.05). Antimicrobial effect of SAEW against Salmonella spp. andE. coli was indicated by a more than 2 log10CFU/g reduction of their population andthe effect was not significantly different from that of NaOCl solution and StAEW at similar treatment conditions (p > 0.05). From these findings, SAEW with a near-neutral pH and low available chlorine concentration exhibits an equivalent bactericidal effectiveness to NaOCl solution and thus SAEW is a potential sanitizer that would be used as an alternative for StAEW and NaOCl solution in the fresh fruit and vegetables industry.



Journal Cover

Microbe(s): Salmonella Enteritidis, Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus


The bactericidal effect of slightly acidic hypochlorous water (SAHW) on Salmonella Enteritidis, Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus, as well as some bacterial strains isolated from fresh lettuce was evaluated. Viable counts of all tested bacterial samples decreased immediately after treatment by SAHW. Most bacterial cells with the exception of B. cereus, and S. aureus were not culturable on TSA after treatment by 1 to 30 mg/L SAHW. Likewise, Pseudomonas sp., and Flavobacterium or Xanthomonas sp., Kurthia sp., Micrococcus sp., and Corynebacterium or Microbacterium sp. were not culturable on TSA after treatment by 30 mg/L SAHW. Viable counts of S. aureus, E. coli, Flavobacterium or Xanthomonas sp., and Pseudomonas sp. showed a 5 to 6 log cfu/mL reduction at day 0 and maintained a count of less than 1 log cfu/mL from day 1 to day 7 following treatment by 30 mg/L SAHW. Sodium hypochlorite (NaOCl, 0.5-1.0 mg/L) decreased the viable counts of S. Enteritidis to less than the lower limit of detection, 1 log cfu/mL, from day 1 to day 7 following treatment by 1 mg/L. NaOCl was not sufficient at 0.5-0.75 mg/L in reducing viable counts of S. Enteritidis because of a 2 to 5 log cfu/mL increase from day 2 to day 5 due to recovery from injury. Initial counts of S. Enteritidis after hydrogen



Journal Cover

Microbe(s): Escherichia coli, Staphylococcus aureus, Salmonella spp.


In the current study, the effectiveness of slightly acidic electrolyzed water (SAEW) on an in vitro inactivation of Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Salmonella spp. was evaluated and compared with other sanitizers. SAEW (pH 5.6, 23 mg/l available chlorine concentration; ACC; and 940 mV oxidation reduction potential; ORP) was generated by electrolysis of dilute solution of HCl (2%) in a chamber of a non-membrane electrolytic cell. One milliliter of bacteria suspension (ca. 10-11 log10CFU/ml) was mixed with 9 ml of SAEW, strong acidic electrolyzed water (StAEW; ca. 50 mg/l ACC), sodium hypochlorite solution (NaOCl; ca.120 mg/l ACC) and distilled water (DW) as control and treated for 60 s. SAEW effectively reduced the population of E. coli, S. aureus and Salmonella spp. by 5.1, 4.8, and 5.2 log10CFU/ml. Although, ACC of SAEW was more than 5 times lower than that of NaOCl solution, they showed no significant bactericidal difference (p > 0.05). However, the bactericidal effect of StAEW was significantly higher (p < 0.05) than SAEW and NaOCl solution in all cases. When tested with each individual test solution, E. coli, S. aureus and Salmonella spp. reductions were not significantly different (p > 0.05). These findings indicate that SAEW with low available chlorine concentration can equally inactivate E. coli, S. aureus and Salmonella spp. as NaOCl solution and therefore SAEW shows a high potential of application in agriculture and food industry as an environmentally friendly disinfection agent.



Journal Cover

Microbe(s): Vibrio vulnificus, Vibrio parahaemolyticus


Vibrio parahaemolyticus and Vibriovulnificus cause severe foodborne illness in humans; thus, to reduce outbreaks of disease, it is clearly important to reduce food contamination by these pathogens. Although electrolyzed oxidizing (EO) water has been reported to exhibit strong bactericidal activities against many pathogens, it has never been tested against V. vulnificus and V. parahaemolyticus. The purpose of this study was to evaluate the bactericidal activity of weakly acidic electrolyzed water (WAEW), a type of EO water, against V. vulnificus and V. parahaemolyticus. Cell suspensions and cell cultures of both pathogens were treated for 30 s with sodium hypochlorite solution containing 35 mg/L available chlorine concentration (ACC) or WAEW containing 35 mg/L ACC. After an initial inoculum of 5.7 log CFU/mL, the number of viable V. vulnificus cells was reduced by 2.2 logs after treatment for 60 s with sodium hypochlorite solution containing 35 mg/L ACC, while no cells survived treatment with WAEW for 30 s. Similar results were obtained for V. parahaemolyticus. Under open storage conditions, WAEW maintained bactericidal activities against cell suspensions of both strains after 5 weeks but disappeared against cell cultures of the two strains after 5 weeks. Under closed storage conditions, however, WAEW maintained bactericidal activities against both cell suspensions and cell cultures of each strain after 5 weeks. No cells were detected in the cell suspensions and cultures when the ACC of WAEW was more than 20 mg/L and treatment time was greater than 15 s. Bactericidal activity of WAEW against V. vulnificus cell culture was reduced when the ACC of WAEW was less than 15 mg/L but was maintained in the V. vulnificus cell suspension when the ACC of WAEW was 0.5 mg/L. Thus, the bactericidal activity of WAEW was primarily affected by ACC rather than treatment time. Similar results were obtained for V. parahaemolyticus, indicating that WAEW kills these microorganisms more quickly than a chemical product such as sodium hypochlorite (NaClO), even at equivalent ACCs.



Journal Cover

Microbe(s): Escherichia coli, Staphylococcus aureus


Suspension quantitative germicidal test showed that electrolyzed oxidizing water (EO water) was an efficient and rapid disinfectant. Disinfection rates towards E. coli (available chlorine concentration ACC: 12.40 mg/L) and Staphylococcus aureus (ACC: 37.30 mg/L) could reach 100% at 1 and 3 min, respectively. Disinfection mechanism of EO water was investigated at a molecular biological level by detecting a series of biochemical indices. The results showed that the dehydrogenase activities of E. coli and S. aureus decreased rapidly, respectively, at the rates of 45.9% and 32% in the 1st minute treatment with EO water. EO water also improved the bacterial membrane permeability, causing the rise of conductivities and the rapid leakages of intracellular DNA, K+, and proteins in 1 min. The leakages of DNA and K+ tended to slow down after about 1 min while those of proteins began to decrease a little after reaching the peak values. The sodium dodecyl sulfonate polyacrylamide gel electrophoresis (SDS-PAGE) showed that EO water destroyed intracellular proteins. The protein bands got fainter and even disappeared as the treatment proceeded. EO water s effects on the bacterial ultrastructures were also verified by the transmission electronic microscopy (TEM) photos. The disinfection mechanism of EO water was composed of several comprehensive factors including the destruction of bacterial protective barriers, the increase of membrane permeability, the leakage of cellular inclusions, and the activity decrease of some key enzymes.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Staphylococcus aureus


The use of different available chlorine concentrations (ACCs) of slightly acidic electrolyzed water (SAEW; 0.5 to 30 mg/liter), different treatment times, and different temperatures for inactivating Escherichia coli O157:H7 and Staphylococcus aureus was evaluated. The morphology of both pathogens also was analyzed with transmission electron microscopy. A 3-min treatment with SAEW (pH 6.0 to 6.5) at ACCs of 2 mg/liter for E. coli O157:H7 and 8 mg/liter for S. aureus resulted in 100% inactivation of two cultures (7.92- to 8.75-log reduction) at 25 C. The bactericidal activity of SAEW was independent of the treatment time and temperature at a higher ACC (P > 0.05). E. coli O157:H7 was much more sensitive than S. aureus to SAEW. The morphological damage to E. coli O157:H7 cells by SAEW was significantly greater than that to S. aureus cells. At an ACC as high as 30 mg/liter, E. coli O157:H7 cells were damaged, but S. aureus cells retained their structure and no cell wall damage or shrinkage was observed. SAEW with a near neutral pH may be a promising disinfectant for inactivation of foodborne pathogens.



Journal Cover

Microbe(s): Total Microbial Count


This study was to investigate the electrolyzed water washing efficiency on the inhibition of bacteria for raw shrimp.The bactericidal activities on raw shrimp treated by four types of electrolyzed water(AEW1,AEW2,MEW1 and MEW2) and two types of organic acid(2%LA and 2%AA) were compared.Sterilize tap water was used as control.The bactericidal activity of on raw shrimp treated with 2%AA was better than electrolyzed water under no vibration condition,Raw shrimp treated with AEW1 was better than 2%AA under vibration condition,tap water treatment was worse than electrolyzed water or organic acid under both no vibration and vibration conditions.Almost no bacterial colony was observed except for tap water.The organoleptic properties of raw shrimp were barely affected by four types of electrolyzed water.The color,odor and overall acceptability of raw shrimp were slightly affected by 2%LA,the odor of raw shrimp was greatly affected by 2%AA,and the muscle tissue and overall acceptability of raw shrimp were slightly affected by 2%AA.Electrolyzed water can be used as cleaning solution to replace tap water in raw shrimp washing in shrimp processing industry.



Journal Cover

Microbe(s): Fungi, Botrytis cinerea, Monilina fructicola


This study evaluated the potential of near-neutral (pH 6.36.5) electrolyzed oxidizing water (EO water) to inactivate pure cultures of Botrytis cinerea and Monilinia fructicola and to mitigate fungal infection of these organisms on fruit surfaces. Treatment of these organisms, in pure culture, with EO water at concentrations of 25, 50, 75, and 100 ppm total residual chlorine (TRC) and 10 min of contact time resulted in a 6 log10 spores/mL reduction of both organisms. A dip treatment or a dip and daily spray treatment of EO water were used to evaluate its ability to prevent or delay the onof surface infection on fruit during postharvest packaging and in retail shelf environments. A 10 minute dip treatment of surface inoculated peaches (M. fructicola) in EO water prevented infection for 3 days and resulted in a 12.5 incidence of infection and a disease severity rating of 6 after 5 days of storage at 25 C. Dipping of green table grapes inoculated with B. cinerea into EO water prevented infection for 7 days and resulted in a 1 incidence of infection and a disease severity rating of 2 after 10 days of storage at 25 C. A dip and daily spray of peaches with EO water prevented infection for 12 days and resulted in a 10 incidence of infection and a 6 disease severity after 14 days of storage at 25 C. A dip and daily spray of grapes with EO water prevented infection for 24 days and resulted in a 2 incidence of infection and a disease severity rating of 2 after 26 days of storage at 25 C. The results from this study suggest that these solutions may prove to be effective for postharvest sanitation of fruit surfaces prior to packaging and may increase the shelf life of the fruit in commercial settings.



Journal Cover

Microbe(s): Total Microbial Count


Electrolyzed oxidizing water (EOW) has been regarded as a potential environmentally friendly broad spectrum microbial decontaminant. EOW with a pH of 3.0 and oxidation reduction potential of 1,079.0 mV were generated by the electrolysis of a dilute NaCl solution (20 mM) in an electrochemical cell. The effects of EOW, 1% NaClO solution, and alkaline electrolyzed water on controlling microbial growth, germination ratio, and enrichmentof -aminobutyric acid in germinated brown rice (GBR) were evaluated in this study. Results show that EOW was the most effective at inhibiting microbial growth during germination. Rinsing the rice grains with EOW at 12-h intervals resulted in aerobic plate count reductions of 4.82 log CFU/g, while soaking resulted in bacterial count reductions of 5.38 log CFU/g after 72 h of germination. Moreover, EOW significantly enriched -aminobutyric acid content in GBR (P < 0.05); content was increased 1.6 times in grain rinsed with EOW and 1.8 times in grain soaked in EOW. The findings indicate that EOW is a feasible disinfectant for industrial GBR production.



Journal Cover

Microbe(s): Escherichia coli O157:H7


Inoculated strawberries were treated with deionized water (control), electrolyzed oxidizing (EO) water (23 and 55 mg/L of residual chlorine), and chlorinated water (55 mg/L of residual chlorine), either with or without ultrasonication. Inoculated broccoli was treated with EO water containing 55 and 100 mg/L of residual chlorine and chlorinated water with 100 mg/L of residual chlorine. Treatments were conducted for 1 and 5 min at temperatures of 4 and 24C, respectively. Dipping strawberries and broccoli into EO water or chlorinated water significantly (P < 0.05) reduced the Escherichia coli O157:H7 counts compared with inoculated controls. Dipping inoculated strawberries with chlorinated water or EO water with ultrasonication reduced E. coli O157:H7 cells by 0.7 to 1.9 log cfu/g depending on the treatment time and treatment solution temperature. Dipping inoculated broccoli into chlorinated water or EO water with ultrasonication for 1 or 5 min reduced the bacterial population by 1.2 to 2.2 log cfu/g. Significant (P < 0.05) reductions in pathogen populations were observed when produce was treated with EO water in conjunction with ultrasonication. Results revealed that EO water was either more than or as effective as chlorinated water in killing E. coli O157:H7 cells on strawberries and broccoli.



Journal Cover

Microbe(s): Listeria monocytogenes, Escherichia coli O157 : H7


Effects of alkaline electrolyzed water (AlEW), acidic electrolyzed water (AcEW), 100 ppm sodium hypochlorite (NaClO), deionized water (DIW), 1% citric acid (CA) alone, and combinations of AlEW with 1% CA (AlEW + CA), in reducing the populations of spoilage bacteria and foodborne pathogens on cabbage were investigated at various dipping times (3, 5, and 10 min) with different dipping temperatures (1, 20, 40, and 50 C). Inhibitory effect of the selected optimal treatment against Listeria monocytogenes and Escherichia coli O157 : H7 on cabbage were also evaluated. Compared to the untreated control, AlEW treatment most effectively reduced the numbers of total bacteria, yeast, and mold, followed by AcEW and 100-ppm NaClO treatments. All treatments dip washed for 5 min significantly reduced the numbers of total bacteria, yeast, and mold on cabbage. With increasing dipping temperature from 1 to 50 C, the reductions of total bacteria, yeast, and mold were significantly increased from 0.19 to 1.12 log CFU/g in the DIW wash treatment (P < 0.05). Combined 1% CA with AlEW treatment at 50 C showed the reduction of around 3.98 and 3.45 log CFU/g on the total count, and yeast and mold, effective reduction of L. monocytogenes (3.99 log CFU/g), and E. coli O157 : H7 (4.19 log CFU/g) on cabbage. The results suggest that combining AlEW with CA could be a possible method to control foodborne pathogens and spoilage bacteria effectively on produce.



Journal Cover

Microbe(s): Enterobacter aerogenes, Enterobacter cloacae, Klebsiella pneumoniae, Morganella morganii, Proteus hauseri


This study investigated efficacy of electrolyzed oxidizing water (EO water) and ice (EO ice) treatments in reducing histamine-producing bacteria (Enterobacter aerogenes, Enterobacter cloacae, Klebsiella pneumoniae, Morganella morganii and Proteus hauseri) on food contact surfaces (ceramic tile and stainless steel) and fish skin (Atlantic salmon and yellowfin tuna). Soaking ceramic tile and stainless steel in EO water (50 ppm chlorine) for 5 min inactivated inoculated bacteria on the surface (>0.92 to >5.4 log CFU/cm2 reductions). E. cloacae, K. pneumoniae and P. hauseri did not survive well on fish skin. Soaking salmon skin in EO water (100 ppm chlorine) for 120 min resulted in 1.3 and 2.2 log CFU/cm2 reductions of E. aerogenes and M. morganii, respectively. A treatment of EO ice (100 ppm chlorine) for 24 h was capable of reducing E. aerogenes and M. morganii on tuna skin by 2.4 and 3.5 log CFU/cm2, respectively. EO water and EO ice can be used as post-harvest treatments for reducing histamine-producing bacteria on food contact surfaces and fish skin.



Journal Cover

Microbe(s): Multiple


Over the past few years, food safety has become and continues to be the number one public concern. Considerable progress to strengthen food safety systems has been achieved in many countries, highlighting the opportunities to reduce and prevent food-borne disease. However, unacceptable rates of food-borne illness still remain and new hazards continue to enter the food supply chain. Contaminations in food and agricultural products may occur in every stage of the food supply chain, from the field to the table, that is production, harvesting, processing, storage and distribution, calling for proper decontamination and insuring food safety at each of these stages using an effective antimicrobial agent. Several commercial products are available for this purpose, however, most of available products are seriously hindered by a number of work and environmental safety limitations calling for the development of a new product which is both safe for environment and workers. In this accord, the use of acidic electrolyzed water (AEW), a new concept developed in Japan, which is now gaining popularity in other countries has been introduced. The principle behind its sterilizing effect is still explored, but it has shown to have strong and significant bactericidal and virucidal and moderate fungicidal properties. Some studies have been carried out in Japan, China, Korea, Canada, Europe and the USA on its pre- and post-harvest application in the field of food processing. This review provides an overview of microbiological safety of food and agricultural produces, points out the burdens of food borne diseases; highlights the drawbacks of currently employed sanitizers and introduces electrolyzed water as a novel non-thermal food sanitizer with potential of application in agriculture and food industry.



Journal Cover

Microbe(s): Bacillus cereus


The effects of acidic electrolyzed water (AcEW), alkaline electrolyzed water (AlEW), 100 ppm sodium hypochlorite (NaClO), and 1% citric acid (CA) alone, and combinations of AcEW with 1% CA (AcEW + CA) and AlEW with 1% CA (AlEW + CA) against Bacillus cereus vegetative cells and spores was evaluated as a function of temperature (25, 30, 40, 50, or 60 C) and dipping time (3 or 6 h). A 3-strain cocktail of Bacillus cereus cells or spores of approximately 107 CFU/g was inoculated in various cereal grains (brown rice, Job s tear rice, glutinous rice, and barley rice). B. cereus vegetative cells and spores were more rapidly inactivated at 40 C than at 25 C. Regardless of the dipping time, all treatments reduced the numbers of B. cereus vegetative cells and spore by more than 1 log CFU/g, except the deionized water (DIW), which showed approximately 0.7 log reduction. The reductions of B. cereus cells increased with increasing dipping temperature (25 to 60 C). B. cereus vegetative cells were much more sensitive to the combined treatments than spores. The effectiveness of the combined electrolyzed water (EW) and 1% CA was considerable in inhibiting B. cereus on cereal grains. The application of combined EW and CA for controlling B. cereus cells and spores on cereal grains has not been previously reported. Therefore, the synergistic effect of EW and CA may provide a valuable insight on reducing foodborne pathogens on fruits, vegetables, and cereal grains.



Journal Cover

Microbe(s): Escherichia coli, Staphylococcus epidermidis


This study investigated residual bacteria and different food types left on tableware items after various washing and sanitization protocols. Escherichia coli K-12 and Staphylococcus epidermidis were inoculated into whole milk and soft cream cheese. The milk was used to contaminate regular drinking glasses and the cheese was used to contaminate plates and silverware. These tableware items were washed in manual (43 C) and mechanical (49 C) washers and sanitized with different sanitizers (24 C) for 5 s. Quaternary ammonium compound, sodium hypochlorite, peroxyacetic acid, neutral electrolyzed water (NEW), and a combination of citric acid with sodium dodecylbenzene sulfonate (acidic formulation) were used as the chemical sanitizers. Tap water was used as a control. Results showed that at least 5-log reductions in both bacterial numbers were achieved for all sanitizers in both types of washers, except for the control. With mechanical dishwashing, the NEW and acidic formulation treatments reduced bacterial populations by >6.9 and >6.0 log CFU per tableware item, respectively. With the manual operation, bacterial numbers were reduced by >5.4 and >6.0 log CFU per tableware item, respectively. This study revealed that NEW and the acidic formulation are as effective as the other chemical sanitizers for food contact surface sanitization in manual and mechanical ware washing.



Journal Cover

Microbe(s): Escherichia coli O157:H7


Treatment of fresh fruits and vegetables with electrolyzed water (EW) has been shown to kill or reduce foodborne pathogens. We evaluated the efficacy of EW in killing Escherichia coli O157:H7 on iceberg lettuce, cabbage, lemons, and tomatoes by using washing and/or chilling treatments simulating those followed in some food service kitchens. Greatest reduction levels on lettuce were achieved by sequentially washing with 14-A (amperage) acidic EW (AcEW) for 15 or 30 s followed by chilling in 16-A AcEW for 15 min. This procedure reduced the pathogen by 2.8 and 3.0 log CFU per leaf, respectively, whereas washing and chilling with tap water reduced the pathogen by 1.9 and 2.4 log CFU per leaf. Washing cabbage leaves for 15 or 30 s with tap water or 14-A AcEW reduced the pathogen by 2.0 and 3.0 log CFU per leaf and 2.5 to 3.0 log CFU per leaf, respectively. The pathogen was reduced by 4.7 log CFU per lemon by washing with 14-A AcEW and 4.1 and 4.5 log CFU per lemon by washing with tap water for 15 or 30 s. A reduction of 5.3 log CFU per lemon was achieved by washing with 14-A alkaline EW for 15 s prior to washing with 14-A AcEW for 15 s. Washing tomatoes with tap water or 14-A AcEW for 15 s reduced the pathogen by 6.4 and 7.9 log CFU per tomato, respectively. Application of AcEW using procedures mimicking food service operations should help minimize cross-contamination and reduce the risk of E. coli O157:H7 being present on produce at the time of consumption.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Salmonella enteritidis


Neutral (NEW) and acidic (AEW) electrolyzed water were stored in open or closed glass bottles under light or dark conditions at 20 C for 30 days. The pH, oxidation reduction potential (ORP), electrical conductivity (EC), available chlorine concentration (ACC), dissolved oxygen (DO), and bactericidal efficiency of NEW and AEW were determined during storage or before and after storage, respectively. The pH and EC of NEW and AEW remained unchanged in storage. The ORP, ACC and DO of AEW decreased 22%, 100% and 52% under open storage conditions, respectively. Light had no significant effects on the physicochemical properties of NEW (P > 0.05). Bactericidal efficiency was not markedly affected by storage conditions for NEW, but decreased significantly for AEW under open storage conditions. Electrolyzed water should be stored in closed containers or used immediately to prevent the loss of available chlorine that is one of the main contributing factors for antimicrobial activity.



Journal Cover

Microbe(s): Escherichia coli O157:H7


This study compared the efficacy of chlorine (20 200 ppm), acidic electrolyzed water (50 ppm chlorine, pH 2.6), acidified sodium chlorite (20 200 ppm chlorite ion concentration, Sanova ), and aqueous chlorine dioxide (20 200 ppm chlorite ion concentration, TriNova ) washes in reducing populations of Escherichia coli O157:H7 on artificially inoculated lettuce. Fresh-cut leaves of Romaine or Iceberg lettuce were inoculated by immersion in water containing E. coli O157:H7 (8 log CFU/ml) for 5 min and dried in a salad spinner. Leaves (25 g) were then washed for 2 min, immediately or following 24 h of storage at 4 C. The washing treatments containing chlorite ion concentrations of 100 and 200 ppm were the most effective against E. coli O157:H7 populations on Iceberg lettuce, with log reductions as high as 1.25 log CFU/g and 1.05 log CFU/g for TriNova and Sanova wash treatments, respectively. All other wash treatments resulted in population reductions of less than 1 log CFU/g. Chlorine (200 ppm), TriNova , Sanova , and acidic electrolyzed water were all equally effective against E. coli O157:H7 on Romaine, with log reductions of ~ 1 log CFU/g. The 20 ppm chlorine wash was as effective as the deionized water wash in reducing populations of E. coli O157:H7 on Romaine and Iceberg lettuce. Scanning electron microscopy indicated that E. coli O157:H7 that was incorporated into biofilms or located in damage lettuce tissue remained on the lettuce leaf, while individual cells on undamaged leaf surfaces were more likely to be washed away.



Journal Cover

Microbe(s): Total Microbial Count


A chlorine sanitizer that gives high disinfection efficacy with minimal available chlorine has a potential to be an environmentally-friendly method for disinfection of vegetables. In the present study, disinfection efficacy of slightly acidic electrolyzed water (SlAEW: pH 6.1, 20 mg/L available chlorine) produced by electrolysis for fresh cut cabbage was compared to that of sodium hypochlorite solution (NaOCl solution: pH 9.6, about 150 mg/L available chlorine). SlAEW reduced about by 1.5 log CFU/g for total aerobic bacteria and 1.3 log CFU/g for moulds and yeasts, compared to fresh cut cabbage before dipping. Statistical analysis of the results showed that the disinfectant efficacy of SlAEW was equivalent to or higher than that of NaOCl solution. Results also indicated that SlAEW under shaded and sealed conditions could keep its available chlorine during storage.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Salmonella typhimurium, Listeria monocytogenes


Acidic electrolyzed water (AC-EW) has strong bactericidal activity against foodborne pathogens on fresh vegetables. However, the efficacy of AC-EW is influenced by soil or other organic materials present. This study examined the bactericidal activity of AC-EW in the presence of organic matter, in the form of bovine serum against foodborne pathogens on the surfaces of green onions and tomatoes. Green onions and tomatoes were inoculated with a culture cocktail of Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes. Treatment of these organisms with AC-EW containing bovine serum concentrations of 5, 10, 15, and 20 ml/l was performed for 15 s, 30 s, 1 min, 3 min and 5 min. The total residual chlorine concentrations of AC-EW decreased proportional to the addition of serum. The bactericidal activity of AC-EW also decreased with increasing bovine serum concentration, whereas unamended AC-EW treatment reduced levels of cells to below the detection limit (0.7 logCFU/g) within 3 min.



Journal Cover

Microbe(s): Salmonella enteritidis


The efficiency of slightly acidic electrolyzed water (SAEW) at different temperatures (4, 20 and 45 C) for inactivation of Salmonella enteritidis and it on the surface of shell eggs was evaluated. The bactericidal activity of SAEW, sodium hypochlorite solution (NaClO) and acidic electrolyzed water (AEW) to inactivate S. enteritidis was also compared. SAEW with a pH value of 6.0-6.5 used was generated by the electrolysis of a dilute hydrochloric acid (2.4 mM) in a chamber without a membrane. Although the pH value of SAEW was greatly higher than that of AEW (pH2.6-2.7), SAEW had a comparative powerful bactericidal activity at the same available chlorine concentrations. The efficiency of SAEW for inactivation of pure S. enteritidis cultures increased with increasing the available chlorine concentration and treatment time at the three different temperatures. The S. enteritidis counts decreased to less than 1.0 log10 CFU/ml at available chlorine of 2 mg/l and 100% inactivation (reduction of 8.2 log10 CFU/ml) was resulted in using SAEW with available chlorine more than 4 mg/l at 4, 20 and 45 C after 2 min treatment, whereas no reduction was observed in the control samples. Moreover, SAEW was also effective for inactivating the S. enteritidis inoculated on the surface of shell eggs. A reduction of 6.5 log10 CFU/g of S. enteritidis on shell eggs was achieved by SAEW containing 15 mg/l available chlorine for 3 min, but only a reduction of 0.9-1.2 log10 CFU/g for the control samples. No survival of S. enteritidis was recovered in waste wash SAEW after treatment. The findings of this study indicate that SAEW may be a promising disinfectant agent for the shell egg washing processing without environmental pollution.



Journal Cover

Microbe(s): Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, and Enterococcus faecalis


Food safety issues and increases in food borne illnesses have promulgated the development of new sanitation methods to eliminate pathogenic organisms on foods and surfaces in food service areas. Electrolyzed oxidizing water (EO water) shows promise as an environmentally friendly broad spectrum microbial decontamination agent. EO water is generated by the passage of a dilute salt solution (1% NaCl) through an electrochemical cell. This electrolytic process converts chloride ions and water molecules into chlorine oxidants (Cl2, HOCl/ClO-). At a near-neutral pH (pH 6.3-6.5), the predominant chemical species is the highly biocidal hypochlorous acid species (HOCl) with the oxidation reduction potential (ORP) of the solution ranging from 800 to 900 mV. The biocidal activity of near-neutral EO water was evaluated at 25 C using pure cultures of Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, and Enterococcus faecalis. Treatment of these organisms, in pure culture, with EO water at concentrations of 20, 50, 100, and 120 ppm total residual chlorine (TRC) and 10 min of contact time resulted in 100% inactivation of all five organisms (reduction of 6.1-6.7 log10 CFU/mL). Spray treatment of surfaces in food service areas with EO water containing 278-310 ppm TRC (pH 6.38) resulted in a 79-100% reduction of microbial growth. Dip (10 min) treatment of spinach at 100 and 120 ppm TRC resulted in a 4.0-5.0 log10 CFU/mL reduction of bacterial counts for all organisms tested. Dipping (10 min) of lettuce at 100 and 120 ppm TRC reduced bacterial counts of E. coli by 0.24-0.25 log10 CFU/mL and reduced all other organisms by 2.43-3.81 log10 CFU/mL.



Journal Cover

Microbe(s): Multiple


Electrolyzed water (EW) is gaining popularity as a sanitizer in the food industries of many countries. By electrolysis, a dilute sodium chloride solution dissociates into acidic electrolyzed water (AEW), which has a pH of 2 to 3, an oxidation-reduction potential of >1,100 mV, and an active chlorine content of 10 to 90 ppm, and basic electrolyzed water (BEW), which has a pH of 10 to 13 and an oxidation-reduction potential of 800 to 900 mV. Vegetative cells of various bacteria in suspension were generally reduced by >6.0 log CFU/ml when AEW was used. However, AEW is a less effective bactericide on utensils, surfaces, and food products because of factors such as surface type and the presence of organic matter. Reductions of bacteria on surfaces and utensils or vegetables and fruits mainly ranged from about 2.0 to 6.0 or 1.0 to 3.5 orders of magnitude, respectively. Higher reductions were obtained for tomatoes. For chicken carcasses, pork, and fish, reductions ranged from about 0.8 to 3.0, 1.0 to 1.8, and 0.4 to 2.8 orders of magnitude, respectively. Considerable reductions were achieved with AEW on eggs. On some food commodities, treatment with BEW followed by AEW produced higher reductions than did treatment with AEW only. EW technology deserves consideration when discussing industrial sanitization of equipment and decontamination of food products. Nevertheless, decontamination treatments for food products always should be considered part of an integral food safety system. Such treatments cannot replace strict adherence to good manufacturing and hygiene practices.



Journal Cover

Microbe(s): Salmonella, Listeria monocytogenes, Escherichia coli O157:H7, Erwinia carotovora


Consumption of minimally-processed, or fresh-cut, fruit and vegetables has rapidly increased in recent years, but there have also been several reported outbreaks associated with the consumption of these products. Sodium hypochlorite is currently the most widespread disinfectant used by fresh-cut industries. Neutral electrolyzed water (NEW) is a novel disinfection system that could represent an alternative to sodium hypochlorite. The aim of the study was to determine whether NEW could replace sodium hypochlorite in the fresh-cut produce industry. The effects of NEW, applied in different concentrations, at different treatment temperatures and for different times, in the reduction of the foodborne pathogens Salmonella, Listeria monocytogenes and Escherichia coli O157:H7 and against the spoilage bacterium Erwinia carotovora were tested in lettuce. Lettuce was artificially inoculated by dipping it in a suspension of the studied pathogens at 108, 107 or 105 cfu ml 1, depending on the assay. The NEW treatment was always compared with washing with deionized water and with a standard hypochlorite treatment. The effect of inoculum size was also studied. Finally, the effect of NEW on the indigenous microbiota of different packaged fresh-cut products was also determined. The bactericidal activity of diluted NEW (containing approximately 50 ppm of free chlorine, pH 8.60) against E. coli O157:H7, Salmonella, L. innocua and E. carotovora on lettuce was similar to that of chlorinated water (120 ppm of free chlorine) with reductions of 1 2 log units. There were generally no significant differences when treating lettuce with NEW for 1 and 3 min. Neither inoculation dose (107 or 105 cfu ml 1) influenced the bacterial reduction achieved. Treating fresh-cut lettuce, carrot, endive, corn salad and Four seasons salad with NEW 1:5 (containing about 50 ppm of free chlorine) was equally effective as applying chlorinated water at 120 ppm. Microbial reduction depended on the vegetable tested: NEW and sodium hypochlorite treatments were more effective on carrot and endive than on iceberg lettuce, Four seasons salad and corn salad. The reductions of indigenous microbiota were smaller than those obtained with the artificially inoculated bacteria tested (0.5 1.2 log reduction). NEW seems to be a promising disinfection method as it would allow to reduce the amount of free chlorine used for the disinfection of fresh-cut produce by the food industry, as the same microbial reduction as sodium hypochlorite is obtained. This would constitute a safer, in situ , and easier to handle way of ensuring food safety.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Salmonella Typhimurium, Listeria monocytogenes


The ability of electrolyzed water (EW) to inactivate foodborne pathogens on the surfaces of lettuce and spinach was investigated. Lettuce and spinach leaves were inoculated with a cocktail of 3 strains each of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes and treated with acidic electrolyzed water (AC-EW), alkaline electrolyzed water (AK-EW), alkaline electrolyzed water followed by acidic electrolyzed water (sequential treatment, AK-EW + AC-EW), deionized water followed by acidic electrolyzed water (sequential treatment, DW + AC-EW), and deionized water (control, DW) for 15, 30 s, and 1, 3, and 5 min at room temperature (22 2 C). For all 3 pathogens, the same pattern of microbial reduction on lettuce and spinach were apparent. The relative efficacy of reduction was AC-EW > DW + AC-EW = AK-EW + AC-EW > AK-EW > control. After a 3-min treatment of AC-EW, the 3 tested pathogens were reduced below the detection limit (0.7 log). DW + AC-EW and AK-EW + AC-EW produced the same levels of reduction after 5 min when compared to the control. AK-EW did not reduce levels of pathogens even after a 5-min treatment on lettuce and spinach. Results suggest that AC-EW treatment was able to significantly reduce populations of the 3 tested pathogens from the surfaces of lettuce and spinach with increasing time of exposure.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes


Recent foodborne outbreaks implicating spinach and lettuce have increased consumer concerns regarding the safety of fresh produce. While the most common commercial antimicrobial intervention for fresh produce is wash water containing 50 to 200 ppm chlorine, this study compares the effectiveness of acidified sodium chlorite, chlorine, and acidic electrolyzed water for inactivating Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes inoculated onto leafy greens. Fresh mixed greens were left uninoculated or inoculated with approximately 6 log CFU/g of E. coli O157:H7, Salmonella, and L. monocytogenes and treated by immersion for 60 or 90 s in different wash solutions (1:150, wt/vol), including 50 ppm of chlorine solution acidified to pH 6.5, acidic electrolyzed water (pH 2.1 0.2, oxygen reduction potential of 1,100 mV, 30 to 35 ppm of free chlorine), and acidified sodium chlorite (1,200 ppm, pH 2.5). Samples were neutralized and homogenized. Bacterial survival was determined by standard spread plating on selective media. Each test case (organism treatment time) was replicated twice with five samples per replicate. There was no difference (P 0.05) in the time of immersion on the antimicrobial effectiveness of the treatments. Furthermore, there was no difference (P 0.05) in survival of the three organisms regardless of treatment or time. Acidified sodium chlorite, resulted in reductions in populations of 3 to 3.8 log CFU/g and was more effective than chlorinated water (2.1 to 2.8 log CFU/g reduction). These results provide the produce industry with important information to assist in selection of effective antimicrobial strategies.



Journal Cover

Microbe(s): Escherichia coli O157:H7


The Nernst equations between the oxidation reduction potential (ORP), the concentration of hypochlorous acid and chlorine and the value of pH in electrolyzed oxidizing water (EOW) were developed in three parts, which were in agreement in the measured values. The role of ORP in EOW for killing Escherichia coli O157:H7 was studied. The inactivation effect of EOW on E. coli O157:H7 was also studied by spectroscopy measurements, and the inactivation mechanism was proposed.



Journal Cover

Microbe(s): Multiple


Electrolyzed water (EW) has attracted much recent attention as a high-performance, new technology for potential use in the food industry. However, this is the first review which examines the potential of the antimicrobial effect of electrolyzed water solutions in many different food models such as vegetable, fruits, meat, poultry, fish, and other products. Production, theoretical of the chemical reactions in the production of EW, theories of disinfectant effect of EW and advantage of using EW would be reviewed. The purpose of this review is to introduce simple information about the use of this new technology in the field of food disinfection, for both readers and food industry.



Journal Cover

Microbe(s): Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, Staphylococcus aureus


This study evaluated the efficacy of neutral electrolyzed water (NEW; 64.1 mg/liter of active chlorine) to reduce populations of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Listeria monocytogenes on plastic and wooden kitchen cutting boards. Its effectiveness was compared with that of a sodium hypochlorite solution (NaClO; 62.3 mg/liter of active chlorine). Inoculated portions of cutting boards were rinsed in either NEW or NaClO solutions, or deionized water (control). Plastic boards were rinsed for 1 min and wooden boards for 1 and 5 min. After each treatment, the surviving population of each strain was determined on the surface and in the soaking water. No significant difference (P 0.05) was found between the final populations of each strain with regard to the treatment solutions (NEW or NaClO). However, a significant difference (P 0.05) was revealed between surface materials after 1 min of washing. Whereas in plastic boards the initial bacterial populations were reduced by 5 log CFU/50 cm2, in wooden cutting boards they underwent a reduction of <3 log CFU/50 cm2. A 5-min exposure time yielded reductions of about 4 log CFU/50 cm2. The surviving populations of all bacteria in NEW and NaClO washing solutions were <1 log CFU/ml after soaking both surfaces. This study revealed that NEW treatment is an effective method for reducing microbial contamination on plastic and wooden cutting boards. NEW efficacy was comparable to that of NaClO, with the advantage of having a larger storage time.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Listeria monocytogenes


Antibacterial activity of electrolyzed oxidizing (EO) water prepared from 0.05% or 0.10% (w/v) sodium chloride (NaCl) solutions against indigenous bacteria associated with fresh strawberries (Fragaria ananassa) was evaluated. The efficacy of EO water and sodium hypochlorite (NaOCl) solution in eliminating and controlling the growth of Listeria monocytogenes and Escherichia coli O157:H7 inoculated onto strawberries stored at 4 +/- 1 C up to 15 d was investigated at exposure time of 1, 5, or 10 min. Posttreatment neutralization of fruit surfaces was also determined. More than 2 log10 CFU/g reductions of aerobic mesophiles were obtained in fruits washed for 10 or 15 min in EO water prepared from 0.10% (w/v) NaCl solution. Bactericidal activity of the disinfectants against L. monocytogenes and E. coli O157:H7 was not affected by posttreatment neutralization, and increasing exposure time did not significantly increase the antibacterial efficacy against both pathogens. While washing fruit surfaces with distilled water resulted in 1.90 and 1.27 log10 CFU/mL of rinse fluid reduction of L. monocytogenes and E. coli O157:H7, respectively, > 2.60 log10 CFU/mL of rinse fluid reduction of L. monocytogenes and up to 2.35 and 3.12 log10 CFU/mL of rinse fluid reduction of E. coli O157:H7 were observed on fruit surfaces washed with EO water and NaOCl solution, respectively. Listeria monocytogenes and E. coli O157:H7 populations decreased over storage regardless of prior treatment. However, EO water and aqueous NaOCl did not show higher antimicrobial potential than water treatment during refrigeration storage.



Journal Cover

Microbe(s): Fungi, Pseudomonas spp., Candida spp.


The effect of acidic, electrolyzed oxidizing (EO) water and chlorinated water on the spoilage microflora of processed broiler carcasses was examined. Carcasses were sprayed for 5 s at 80 psi with tap, chlorinated, or EO water in an inside-outside bird washer. Treated carcasses were then stored at 4 C for 0, 3, 7, or 14 d, and the microbial flora of the carcasses was sampled using the whole-carcass rinse procedure. Populations of psychrotrophic bacteria and yeasts in the carcass rinsates were enumerated. Results indicated that immediately after spraying the carcasses, significantly fewer psychrotrophic bacteria were recovered from carcasses sprayed with chlorinated or EO water than from carcasses sprayed with tap water. Furthermore, significantly fewer yeasts were recovered from carcasses sprayed with EO water than from carcasses sprayed with tap or chlorinated water. The population of psychrotrophic bacteria and yeasts increased on all carcasses during refrigerated storage. However, after 14 d of storage, significantly fewer psychrotrophic bacteria and yeasts were recovered from carcasses sprayed with EO water than from carcasses sprayed with tap or chlorinated water, and significantly fewer microorganisms were recovered from carcasses sprayed with chlorinated water than from carcasses sprayed with tap water. Pseudomonas spp. and Candida spp. were the primary microbial isolates recovered from the broiler carcasses. Findings from the present study indicate that EO water can effectively be used in inside-outside bird washers to decrease the population of spoilage bacteria and yeasts on processed broiler carcasses.



Journal Cover

Microbe(s): Escherichia coli, Campylobacter, Salmonella


A study was conducted to investigate the effects of spray washing broiler carcasses with acidified electrolyzed oxidizing water (EO) or sodium hypochlorite (HOCl) solutions for 5, 10, or 15 s. Commercial broiler carcasses were contaminated with 0.1 g of broiler cecal contents inoculated with 105 cells of Campylobacter and 105 cells of nalidixic acid-resistant Salmonella. Numbers of bacteria recovered from unwashed control carcasses were 6.7, 5.9, 6.3, and 3.9 log10 cfu/mL for total aerobic bacteria, Escherichia coli, Campylobacter, and Salmonella, respectively. Washing in either EO (50 mg/L of sodium hypochlorite, pH 2.4, oxidation reduction potential of 1,180 mV) or HOCl (50 mg/L of sodium hypochlorite, pH 8.0) significantly reduced the levels of bacteria recovered from carcasses (P < 0.05). Carcasses washed with EO had slightly lower levels of total aerobic bacteria (0.3 log10 cfu/mL) and E. coli (0.2 log10 cfu/mL) than HOCl-treated carcasses; however, populations of Campylobacter and Salmonella were comparable after washing in either solution. Increasing the carcass washing time from 5 to 10 s lowered the levels of total aerobic bacteria (6.1 vs. 5.8 log10 cfu/mL), E. coli (4.6 vs. 4.1 log10 cfu/mL), Campylobacter (5.2 vs. 4.2 log10 cfu/mL), and Salmonella (2.0 vs. 1.2 log10 cfu/mL), but no further microbiological reductions occurred when washing time was extended from 10 to 15 s. Data from the present study show that washing poultry carcasses with EO is slightly better (total aerobic bacteria and E. coli) or equivalent to (Campylobacter and Salmonella) washing with HOCl. Washing broiler carcasses for a period equivalent to 2 inside-outside bird washers (10 s) provided greater reductions in carcass bacterial populations than periods simulating 1 (5 s) or 3 inside-outside bird washers (15 s).



Journal Cover

Microbe(s): Escherichia coli O157:H7, Salmonella spp., Listeria monocytogenes


Shredded carrots were inoculated with Escherichia coli O157:H7, Salmonella or Listeria monocytogenes and washed for 1 or 2 min with chlorine (Cl; 200 ppm), peroxyacetic acid (PA; 40 ppm) or acidified sodium chlorite (ASC; 100, 200, 500 ppm) under simulated commercial processing conditions. After washed, the carrots were spin dried, packaged and stored at 5 C for up to 10 days. Bacterial enumeration was significantly (P 0.05) reduced by 1, 1.5 and 2.5 log CFU/g after washing with ASC 100, 250 and 500 ppm, respectively. All sanitizers reduced pathogen load below that of tap water wash and unwashed controls. During storage at 5 C the bacterial load of all treatments increased gradually, but to different extent in different treatments. ASC inhibited bacterial growth more effectively than the other sanitizers and also maintained the lowest pathogen counts (<1 log CFU/g) during storage. Organic matter in the process water significantly (P 0.05) reduced the antibacterial efficacy of Cl, but not that of PA or ASC. Therefore, ASC shows the potential to be used as a commercial sanitizer for washing shredded carrots.



Journal Cover

Microbe(s): Listeria monocytogenes


The ability of electrolyzed (EO) water to inactivate Listeria monocytogenes in suspension and biofilms on stainless steel in the presence of organic matter (sterile filtered chicken serum) was investigated. A five-strain mixture of L. monocytogenes was treated with deionized, alkaline EO, and acidic EO water containing chicken serum (0, 5, and 10 ml/liter) for 1 and 5 min. Coupons containing L. monocytogenes biofilms were also overlaid with chicken serum (0, 2.5, 5.0, and 7.5 ml/liter) and then treated with deionized water, alkaline EO water, acidic EO water, alkaline EO water followed by acidic EO water, and a sodium hypochlorite solution for 30 and 60 s. Chicken serum decreased the oxidation-reduction potential and chlorine concentration of acidic EO water but did not significantly affect its pH. In the absence of serum, acidic EO water containing chlorine at a concentration of 44 mg/liter produced a > 6-log reduction in L. monocytogenes in suspension, but its bactericidal activity decreased with increasing serum concentration. Acidic EO water and acidified sodium hypochlorite solution inactivated L. monocytogenes biofilms to similar levels, and their bactericidal effect decreased with increasing serum concentration and increased with increasing time of exposure. The sequential 30-s treatment of alkaline EO water followed by acidic EO water produced 4- to 5-log reductions in L. monocytogenes biofilms, even in the presence of organic matter.



Journal Cover

Microbe(s): Total Microbial Count, Total Aerobic Bacteria, Coliforms, Escherichia coli


The effectiveness of electrolyzed oxidizing anode (EOA) water (oxidation-reduction potential, 1,120 mV; pH 2.0) as a sanitizer for use in abattoirs was compared with the iodophor (IOD) Mikroklene (25 ppm), a sanitizer approved for use by regulatory authorities in Canada and the United States. A total of 240 swab (100 cm2) samples were obtained from 4 sites on the kill floor and 16 sites in the secondary processing areas, during two visits within a 4-week period to each of three meat packing plants, processing < or =50 animals per week. Swabs were obtained 12 h after the application of IOD and EOA and were analyzed for the presence of total aerobic bacteria, total coliforms, and total Escherichia coli. Total aerobic bacteria (log CFU/ 100 cm2) recovered from the 20 sample sites were lower (P < 0.0001) in EOA as compared with IOD (2.94 +/- 0.12 versus 3.75 +/- 0.12, respectively). Plant A was 1.5 times more likely (P < 0.0001) to have a sampling site positive for the presence of coliforms and E. coli than plants B and C. There was no difference (P > 0.05) between treatment IOD or EOA in the likelihood of obtaining a positive sample for the presence of total coliforms or E. coli among the three plants. When the kill floor and secondary processing areas are compared, the likelihood of obtaining a sample positive for coliforms or E. coli was similar (P > or = 0.05). Results indicate that EOA was more effective than IOD in reducing populations of total aerobic bacteria on equipment surfaces in the three meat packing plants studied. Because the likelihood of obtaining a positive sample for coliforms or E. coli in EOA as compared with IOD was similar, EOA may be a suitable alternative or complement to IOD as a sanitizer in small- to medium-sized abattoirs. Additional research is required to further evaluate the effectiveness of EOA to sanitize processing equipment on the basis of subsequent isolation of aerobes, coliforms, and E. coli from meat products.



Journal Cover

Microbe(s): Escherichia coli


Electrolyzed - oxidizing (EO) water is a relatively new method that has been utilized for killing pathogens in agriculture, medical sterilization and food sanitation. This water is generated by passing sodium chloride solution through EO water generator. In this study, the EO water was used to treat holy basil inoculated with Escherichia coli. The initial pH and oxidation - reduction potential (ORP) of EO water were 2.09 and 1200 mV, respectively. The treatments changed ORP to 800,950 and 1100 mV. The contact times were 10,30 and 60 min. In pure culture, E. coli viable counts in the sample treated with EO water were reduced to undetectable levels at all ORP and times. However no reduction in E. coli counts was achieved in the control sample (treated with deionized water). The initial population of E. coli was about 8.5 log10 CFU / ml which was inoculated on 5 g of holy basil. Results showed that the treatment treated with EO water was reduced about 2 log10 CFU / ml in ORP 800 and 950 mV, 4 log10 CFU / ml in ORP 1100 mV for 10 min. When the contact time increased to 30 min, the reduction of E. coli count was about 3 log 10 CFU / ml in ORP 950 mV and 5 log10 CFU / ml in ORP 1100 mV. But the reduction was not different from 10 min when treated with ORP 800 mV. When the contact time increased to 60 min, the reduction of E. coli count was about 3 log10 CFU / ml in ORP 800 mV, 4 log10 CFU / ml in ORP 950 mV. and 6 log10 CFU / ml in ORP 1100 mV. These results could be concluded that the ORP of EO water and contact time significantly inactivated E. coli.



Journal Cover

Microbe(s): Escherichia coli, Vibrio parahaemolyticus


For reducing bacterial contamination, electrolyzed oxidizing water (EO water) has been used to reduce microbial population on seafood and platform of fish retailer. The specimens of tilapia were inoculated with Escherichia coli and Vibrio parahaemolyticus, and then soaked into EO water for up to 10 min. EO water achieved additional 0.7 log CFU/cm2 reduction than tap water on E. coli after 1 min treatment and additional treatment time did not achieved additional reduction. EO water treatment also reduced V. parahaemolyticus, by 1.5 log CFU/cm2 after 5 min treatment and achieved 2.6 log CFU/cm2 reduction after 10 min. The pathogenic bacteria were not detected in EO water after soaking treatment. In addition, EO water could effectively disinfect the platform of fish retailer in traditional markets and fish markets.



Journal Cover

Microbe(s): Fungi, Penicillium expansum


The use of water flotation tanks during apple packing increases the risk of contamination of apples by spores of Penicillium expansum, which may accumulate in the recirculating water. Routine addition of sanitizers to the water may prevent such contamination. Sodium hypochlorite (NaOCl), chlorine dioxide (ClO2), and electrolyzed oxidizing (EO) water have varied activity against spores of P. expansum, and their effectiveness could be enhanced using surfactants. The objective of this study was to determine the ability of three nonionic surfactants, polyoxyethylene sorbitan monooleate (Tween 80), polyoxyethylene sorbitan monolaurate (Tween 20), and sorbitan monolaurate (Span 20), to enhance the efficacy of NaOCl, ClO2, and EO water against spores of P. expansum in aqueous suspension at various temperatures and pH conditions. The efficacy of NaOCl solutions was enhanced by the addition of surfactants at both pH 6.3 and pH 8 (up to 5 log CFU reduction). EO water and ClO2 were effective against P. expansum spores (up to 5 log CFU and 4 log CFU reduction, respectively), but addition of surfactants was not beneficial. All solutions were less effective at 4 C compared to 24 C irrespective of the presence of surfactants. Nonionic surfactants could potentially be used with NaOCl to improve control of P. expansum in flotation tanks, but the efficacy of such formulations should be validated under apple packing conditions.



Journal Cover

Microbe(s): Pseudomonas fluorescens, Pantoea agglomerans or Rahnella aquatilis


The efficacy of Electrolysed Oxidising Water (EOW) for inactivating spoilage microorganisms in process water and on minimally processed vegetables was investigated. The direct effect of EOW on three important spoilage bacteria namely; Pseudomonas fluorescens, Pantoea agglomerans or Rahnella aquatilis was determined by inoculating tap water or artificial process water with approximately 8 log CFU/ml pure culture and electrolysing the resultant solutions. The three bacteria were each reduced to undetectable levels at low (0.5 A) and relatively higher levels (1.0 A) of current in tap water and artificial process water , respectively. The residual effect of EOW on P. fluorescens, P. agglomerans or R. aquatilis was determined by incubating at room temperature 1 ml (approximately 9 log CFU/ml) pure culture suspensions in 9 ml of EOW-T (EOW produced from tap water), EOW-A (EOW produced from artificial process water supplemented with approximately 60.7 mg Cl /l and 39.3 mg Na+/l) or deionised water (control) for 0, 15, 45 or 90 min. The bactericidal activity of both EOW-T and EOW-A increased with the concentration of free oxidants and incubation period and the three bacteria were completely reduced at free oxidants-incubation period combinations of 3.88 mg/l 45 min and 5.1 mg/l 90 min in EOW-T and EOW-A, respectively. Two types of industrial vegetable process water; salad-mix and soup process water, which had each a total psychrotrophic count of approximately 8 log CFU/ml were then electrolysed. Without any NaCl addition, only 1.2 and 2.1 log reductions of the psychrotrophs in soup and salad-mix process water was attained respectively. Supplementation of the process water with approximately 60.7 mg Cl /l and 39.3 mg Na+/l afterwards resulted in complete reduction of the psychrotrophic count in both process waters, but soup process water required relatively higher levels of current compared to salad-mix water. Finally, fresh-cut lettuce was washed in EOW-T containing 3.62 mg free oxidants/l, EOW-IP (EOW produced from industrial process water) containing 2.8 mg free oxidants/l or tap water (control) for 1 or 5 min. Washing the vegetables for 1 min in EOW-T resulted in 1.9, 1.2, and 1.3 log reductions of psychrotrophs, lactic acid bacteria and Enterobacteriacae, respectively, which increased to 3.3, 2.6, and 1.9 log reductions after washing for 5 min instead. EOW-IP tested in this work had no bactericidal effect on the microflora of fresh-cut lettuce. Electrolysis could therefore be used to decontaminate process water for vegetable pre-washing and to sanitise tap water for final rinsing of vegetables, respectively.



Journal Cover

Microbe(s): Vibrio parahaemolyticus, Vibrio vulnificus


Contamination of Vibrio parahaemolyticus and Vibrio vulnificus in oysters is a food safety concern. This study investigated effects of electrolyzed oxidizing (EO) water treatment on reducing V. parahaemolyticus and V. vulnificus in laboratory-contaminated oysters. EO water exhibited strong antibacterial activity against V. parahaemolyticus and V. vulnificus in pure cultures. Populations of V. parahaemolyticus (8.74 107 CFU/ml) and V. vulnificus (8.69 107 CFU/ml) decreased quickly in EO water containing 0.5% NaCl to nondetectable levels (>6.6 log reductions) within 15 s. Freshly harvested Pacific oysters were inoculated with a five-strain cocktail of V. parahaemolyticus or V. vulnificus at levels of 104 and 106 most probable number (MPN)/g and treated with EO water (chlorine, 30 ppm; pH 2.82; oxidation-reduction potential, 1131 mV) containing 1% NaCl at room temperature. Reductions of V. parahaemolyticus and V. vulnificus in oysters were determined at 0 (before treatment), 2, 4, 6, and 8h of treatment. Holding oysters inoculated with V. parahaemolyticus or V. vulnificus in the EO water containing 1% NaCl for 4 to 6 h resulted in significant (P < 0.05) reductions of V. parahaemolyticus and V. vulnificus by 1.13 and 1.05 log MPN/g, respectively. Extended exposure (>12 h) of oysters in EO water containing high levels of chlorine (>30 ppm) was found to be detrimental to oysters. EO water could be used as a postharvest treatment to reduce Vibrio contamination in oysters. However, treatment should be limited to 4 to6hto avoid death of oysters. Further studies are needed to determine effects of EO water treatment on sensory characteristics of oysters.



Journal Cover

Microbe(s): Vibrio parahaemolyticus


AIM: To determine the efficacy of electrolysed oxidizing (EO) water in inactivating Vibrio parahaemolyticus on kitchen cutting boards and food contact surfaces. METHODS AND RESULTS: Cutting boards (bamboo, wood and plastic) and food contact surfaces (stainless steel and glazed ceramic tile) were inoculated with V. parahaemolyticus. Viable cells of V. parahaemolyticus were detected on all cutting boards and food contact surfaces after 10 and 30 min, respectively, at room temperatures. Soaking inoculated food contact surfaces and cutting boards in distilled water for 1 and 3 min, respectively, resulted in various reductions of V. parahaemolyticus, but failed to remove the organism completely from surfaces. However, the treatment of EO water [pH 2.7, chlorine 40 ppm, oxidation-reduction potential 1151 mV] for 30, 45, and 60 s, completely inactivated V. parahaemolyticus on stainless steel, ceramic tile, and plastic cutting boards, respectively. CONCLUSIONS: EO water could be used as a disinfecting agent for inactivating V. parahaemolyticus on plastic and wood cutting boards and food contact surfaces. SIGNIFICANCE AND IMPACT OF THE STUDY: Rinsing the food contact surfaces with EO water or soaking cutting boards in EO water for up to 5 min could be a simple strategy to reduce cross-contamination of V. parahaemolyticus during food preparation.



Journal Cover

Microbe(s): Listeria monocytogenes


The effects of electrolyzed oxidizing (EO) water on reducing Listeria monocytogenes contamination on seafood processing surfaces were studied. Chips (5 5 cm2) of stainless steel sheet (SS), ceramic tile (CT), and floor tile (FT) with and without crabmeat residue on the surface were inoculated with L. monocytogenes and soaked in tap or EO water for 5 min. Viable cells of L. monocytogenes were detected on all chip surfaces with or without crabmeat residue after being held at room temperature for 1 h. Soaking contaminated chips in tap water resulted in small-degree reductions of the organism (0.40 0.66 log cfu/chip on clean surfaces and 0.78 1.33 log cfu/chip on dirty surfaces). Treatments of EO water significantly (p < 0.05) reduced L. monocytogenes on clean surfaces (3.73 log on SS, 4.24 log on CT, and 5.12 log on FT). Presence of crabmeat residue on chip surfaces reduced the effectiveness of EO water on inactivating Listeria cells. However, treatments of EO water also resulted in significant reductions of L. monocytogenes on dirty surfaces (2.33 log on SS and CT and 1.52 log on FT) when compared with tap water treatments. The antimicrobial activity of EO water was positively correlated with its chlorine content. High oxidation reduction potential (ORP) of EO water also contributed significantly to its antimicrobial activity against L. monocytogenes. EO water was more effective than chlorine water on inactivating L. monocytogenes on surfaces and could be used as a chlorine alternative for sanitation purpose. Application of EO water following a thorough cleaning process could greatly reduce L. monocytogenes contamination in seafood processing environments.



Journal Cover

Microbe(s): Listeria monocytogenes


The effects of electrolyzed oxidizing (EO) water on reducing Listeria monocytogenes contamination on seafood processing surfaces were studied. Chips (5 5 cm2) of stainless steel sheet (SS), ceramic tile (CT), and floor tile (FT) with and without crabmeat residue on the surface were inoculated with L. monocytogenes and soaked in tap or EO water for 5 min. Viable cells of L. monocytogenes were detected on all chip surfaces with or without crabmeat residue after being held at room temperature for 1 h. Soaking contaminated chips in tap water resulted in small-degree reductions of the organism (0.40 0.66 log cfu/chip on clean surfaces and 0.78 1.33 log cfu/chip on dirty surfaces). Treatments of EO water significantly (p < 0.05) reduced L. monocytogenes on clean surfaces (3.73 log on SS, 4.24 log on CT, and 5.12 log on FT). Presence of crabmeat residue on chip surfaces reduced the effectiveness of EO water on inactivating Listeria cells. However, treatments of EO water also resulted in significant reductions of L. monocytogenes on dirty surfaces (2.33 log on SS and CT and 1.52 log on FT) when compared with tap water treatments. The antimicrobial activity of EO water was positively correlated with its chlorine content. High oxidation reduction potential (ORP) of EO water also contributed significantly to its antimicrobial activity against L. monocytogenes. EO water was more effective than chlorine water on inactivating L. monocytogenes on surfaces and could be used as a chlorine alternative for sanitation purpose. Application of EO water following a thorough cleaning process could greatly reduce L. monocytogenes contamination in seafood processing environments.



Journal Cover

Microbe(s): Total Microbial Count


Among different fish slices used for sashimi preparation, tuna is the most popular and preferable fish type for Taiwanese people. To improve the hygienic quality of fish slices, electrolyzed (EO) water containing 10, 50, and 100 mg/L chlorine, was used in combination with CO gas treatment. Effect of different treatment on aerobic plate count (APC), volatile basic nitrogen (VBN), K value, and Hunter L*, a*, b* values of yellow-fin tuna steak during storage (4 C and 20 C) were evaluated. It was found that APC, VBN, and K values increased with storage time for all treatment. Except for K value, APC and VBN of tuna steak treated with the combination of more than 50 mg/L chlorine EO water and CO gas had the lowest value after 8 d of refrigerated storage. Hunter a* value of tuna steak treated with only CO gas was the highest, followed by those treated with EO water and CO gas. These results demonstrated that EO water containing 50 mg/L chlorine combined with CO gas treatment in tuna fish steak would be an effective method for enhancing the hygienic quality and freshness for tuna meat and extending refrigerated storage time. Tuna treated with EO water containing 100 mg/L chlorine and CO gas combination had the lowest APC immediately after treatment and reduced further to below detection limit after 1 mo frozen storage at 20 C.



Journal Cover

Microbe(s): Total Microbial Count


The effects of electrolyzed water ice (EW-ice), compared with traditional tap water ice (TW-ice), on the microbiological, chemical, and sensory quality of Pacific saury (Cololabis saira) stored for a period of up to 30 days at 4 C were evaluated. EW-ice with active chlorine at a concentration of 34 mg/kg was prepared from weak acidic electrolyzed water, whose pH, oxidation-reduction potential, and chlorine content were 5, 866 mV, and 47 mg/liter, respectively. Microbiological analysis showed that EW-ice, compared with TW-ice, markedly inhibited the growth of both aerobic and psychrotrophic bacteria in saury flesh during refrigerated storage, primarily because of the action of active chlorine. Chemical analysis revealed that EW-ice retarded the formation of volatile basic nitrogen and thiobarbituric acid reactive substances and reduced the accumulation of alkaline compounds in the fish flesh in comparison with TW-ice. Sensory analysis confirmed that the freshness of saury was better preserved in EW-ice than in TW-ice and showed that the saury stored in EW-ice had a shelf life that was about 4 to 5 days longer than the fish stored in TW-ice.



Journal Cover

Microbe(s): Escherichia coli O157: H7, Listeria monocytogenes


Raw fish is prone to the risk of microbial outbreaks due to contamination by pathogenic microorganisms, such as Escherichia coli O157:H7 and Listeria monocytogenes. Therefore, it is essential to treat raw fish to inactivate pathogenic microorganisms. Electrolyzed Oxidizing Water (EO) is a novel antimicrobial agent containing acidic solution with a pH of 2.6, Oxidation Reduction Potential (ORP) of 1150 mV, and 70 90 ppm free chlorine, and alkaline solution with a pH of 11.4 and ORP of 795 mV. This study was undertaken to evaluate the efficacy of acidic EO water treatment and alkaline EO water treatment followed by acidic EO water treatment at various temperatures for the inactivation of E. coli O157:H7 and L. monocytogenes Scott A on the muscle and skin surfaces of inoculated salmon fillets. Inoculated salmon fillets were treated with acidic EO water at 22 and 35 C and 90 ppm free-chlorine solution as control at 22 C for 2, 4, 8, 16, 32, and 64 min. The acidic EO water treatments resulted in a reduction of L. monocytogenes Scott A population in the range of 0.40 log10 CFU/g (60%) at 22 C to 1.12 log10 CFU/g (92.3%) at 35 C. Treatment of inoculated salmon fillets with acidic EO water reduced E. coli O157:H7 populations by 0.49 log10 CFU/g (67%) at 22 C and 1.07 log10 CFU/g (91.1%) at 35 C. The maximum reduction with chlorine solution (control) was 1.46 log10 CFU/g (96.3%) for E. coli O157:H7 and 1.3 log10 CFU/g (95.3%) for L. monocytogenes Scott A at 64 min. A response surface model was developed for alkaline treatment followed by acidic EO water treatment to predict treatment times in the range of 5 30 min and temperatures in the range of 22 35 C for effective treatment with alkaline EO water followed by acidic water, alkaline and acidic water treatments. Response surface analysis demonstrated maximum log reductions of 1.33 log10 CFU/g (95.3%) for E. coli O157:H7 and 1.09 log10 CFU/g (91.9%) for L. monocytogenes Scott A. Data collected from the treatments was used to develop empirical models as a function of treatment times and temperature for prediction of population of E. coli O157:H7 and L. monocytogenes Scott A. Correlations (R2) of 0.52 and 0.77 were obtained between model predicted and experimental log10 reduction for E. coli O157:H7 and L. monocytogenes Scott A reductions, respectively. These results clearly indicated that EO water has a potential to be used for decontamination of raw fish.



Journal Cover

Microbe(s): Campylobacter jejuni


This study was undertaken to investigate the efficacy of alkaline and acidic electrolyzed (EO) water in preventing and removing fecal contaminants and killing Campylobacter jejuni on poultry carcasses under simulated industrial processing conditions. New York dressed and defeathered chicken carcasses spot-inoculated with cecal material or C. jejuni were subjected to spraying treatment with alkaline EO or 10% trisodium phosphate (TSP) water or combinations of spraying and immersion treatments with acidic EO and chlorinated water, respectively. Prespraying chicken carcasses with alkaline EO water significantly lowered cecal material attachment scores (3.77) than tap water (4.07) and 10% TSP (4.08) upon treatment of the dorsal area. Combinations of pre- and postspraying were significantly more effective than postspraying only, especially when using alkaline EO water in removing fecal materials on the surface of chicken carcasses. Although treatment by immersion only in EO and chlorinated water significantly reduced the initial population (4.92 log10 cfu/g) of C. jejuni by 2.33 and 2.05 log10 cfu/g, respectively, combinations of spraying and immersion treatment did not improve the bactericidal effect of sanitizers. The results indicated that alkaline EO water might provide an alternative to TSP in preventing attachment and removal of feces on the surface of chicken carcasses. The results also suggested that chicken carcasses containing pathogenic microorganisms may contribute to the cross-contamination of whole batches of chickens during processing in the chiller tank and afterward.



Journal Cover

Microbe(s): Listeria monocytogenes


Experiments were conducted to determine the effectiveness of acidic (EOA) or basic electrolyzed oxidizing (EOB) water, alone or in combination, on ready-to-eat (RTE) meats to reduce Listeria monocytogenes (LM). Frankfurters or ham surfaces were experimentally inoculated with LM and subjected to dipping or spraying treatments (25 or 4 C for up to 30 min) with EOA, EOB, and other food grade compounds. LM was reduced the greatest when frankfurters were treated with EOA and dipped at 25 C for 15 min. A combination spray application of EOB/EOA also resulted in a slight reduction of LM on frankfurters and ham. However, reductions greater than 1 log CFU/g were not observed for the duration of the study. Even with a prolonged contact time, treatments with EOA or EOB were not enough to meet regulatory requirements for control of LM on RTE meats. As such, additional studies to identify food grade antimicrobials to control the pathogen on RTE meats are warranted.



Journal Cover

Microbe(s): Salmonella, Listeria, Campylobacter, Escherichia coli


In 1999 the foodborne pathogens Salmonella, Listeria, Campylobacter, and Escherichia coli (both O157 and non-O157) were estimated to cause more than 6 million illnesses and approximately 9000 deaths each year. However, the most recent Centers for Disease Control and Prevention report on the sources and incidence of foodborne disease, released in 2004, has shown a dramatic decrease in E. coli O157:H7 infections. Since raw beef products are the most frequently foodborne sources of these pathogens, the results of this report demonstrate that the microbiological quality of raw beef has improved greatly. During the intervening years, post-harvest interventions have continually improved, with new attention to hide decontamination and innovative treatments of carcasses. In addition, a system to hold and test beef trim or ground beef for E. coli O157:H7 before its release into commerce has provided an even greater level of safety. In this paper, we review the latest information on the prevalence of E. coli O157:H7 and other pathogens on beef, the evidence identifying the hide as the primary source of pathogens on beef carcasses, the efficacy of various hide and carcass interventions, and other developments that have led or have the potential to lead to even greater improvements in the microbial quality of beef.



Journal Cover

Microbe(s): Listeria monocytogenes


Biofilms are potential sources of contamination to food in processing plants, because they frequently survive sanitizer treatments during cleaning. The objective of this research was to investigate the combined use of alkaline and acidic electrolyzed (EO) water in the inactivation of Listeria monocytogenes biofilms on stainless steel surfaces. Biofilms were grown on rectangular stainless steel (type 304, no. 4 finish) coupons (2 by 5 cm) in a 1:10 dilution of tryptic soy broth that contained a five-strain mixture of L. monocytogenes for 48 h at 25 C. The coupons with biofilms were then treated with acidic EO water or alkaline EO water or with alkaline EO water followed by acidic EO water produced at 14 and 20 A for 30, 60, and 120 s. Alkaline EO water alone did not produce significant reductions in L. monocytogenes biofilms when compared with the control. Treatment with acidic EO water only for 30 to 120 s, on the other hand, reduced the viable bacterial populations in the biofilms by 4.3 to 5.2 log CFU per coupon, whereas the combined treatment of alkaline EO water followed by acidic EO water produced an additional 0.3- to 1.2-log CFU per coupon reduction. The population of L. monocytogenes reduced by treatments with acidic EO water increased significantly with increasing time of exposure. However, no significant differences occurred between treatments with EO water produced at 14 and 20 A. Results suggest that alkaline and acidic EO water can be used together to achieve a better inactivation of biofilms than when applied individually.



Journal Cover

Microbe(s): Listeria monocytogenes


The effectiveness of electrolyzed oxidizing (EO) water for the inactivation of L. monocytogenes insuspension and when inoculated on lettuce leaves was evaluated. An electrolytic cell for the production of EO water was built and a solution of 5% NaCl was used. The EO water produced had a residual chlorine concentration of 29 parts per million (ppm) and pH 2.83. Ten strains of L. monocytogenes isolated from processed chicken (109 CFU/ml) were inoculated into 9 ml of EO water or 9 ml of deionized water (control) and incubated at 15 C for 5, 10, 15 and 20 min. The surviving population of each strain was determined on Columbia agar. An exposure time of 5 min reduced the populations by approximately 6.6log CFU/ml. The most resistant strains to sodium hypochlorite (NaOCl) were selected and used in a strain mixture (9.56 log CFU/ml, 109UFC/ml approximately) for the inoculation of 35 lettuce samples, by the dip inoculation method using distilled water as control. The population mean of L. monocytogenes after treatment with EO water and distilled water was reduced by 3.92 and 2.46 log CFU/ml respectively (p=0.00001). EO water and 6% acetic acid (vinegar) were combined to improve the EO water effect on L. monocytogenes inoculated in lettuce; the effectiveness of this combination was examined. The results showed that there was a synergistic effect of both antimicrobial agents (population reduction by 5.49 logCFU/ml approximately) on the viability of L. monocytogenes cells.



Journal Cover

Microbe(s): Salmonella Enteritidis, Listeria monocytogenes


The efficacy of acidic electrolyzed (EO) water produced at three levels of total available chlorine (16, 41, and 77 mg/liter) and chlorinated water with 45 and 200 mg/liter of residual chlorine was investigated for inactivating Salmonella Enteritidis and Listeria monocytogenes on shell eggs. An increasing reduction in Listeria population was observed with increasing chlorine concentration from 16 to 77 mg/liter and treatment time from 1 to 5 min, resulting in a maximal reduction of 3.70 log CFU per shell egg compared with a deionized water wash for 5 min. There was no significant difference in antibacterial activities against Salmonella and Listeria at the same treatment time between 45 mg/liter of chlorinated water and 14 A acidic EO water treatment (P 0.05). Chlorinated water (200 mg/liter) wash for 3 and 5 min was the most effective treatment; it reduced mean populations of Listeria and Salmonella on inoculated eggs by 4.89 and 3.83 log CFU/shell egg, respectively. However, reductions (log CFU/shell egg) of Listeria (4.39) and Salmonella (3.66) by 1 min alkaline EO water treatment followed by another 1 min of 14 A acidic EO water (41 mg/liter chlorine) treatment had a similar reduction to the 1 min 200 mg/liter chlorinated water treatment for Listeria (4.01) and Salmonella (3.81). This study demonstrated that a combination of alkaline and acidic EO water wash is equivalent to 200 mg/liter of chlorinated water wash for reducing populations of Salmonella Enteritidis and L. monocytogenes on shell eggs.



Journal Cover

Microbe(s): Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, Staphylococcus aureus


Aim: To ascertain the efficacy of neutral electrolysed water (NEW) in reducing Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Listeria monocytogenes on glass and stainless steel surfaces. Its effectiveness for that purpose is compared with that of a sodium hypochlorite (NaClO) solution with similar pH, oxidation-reduction potential (ORP) and active chlorine content. Methods and Results: First, the bactericidal activity of NEW was evaluated over pure cultures (8-5 log CFU ml-1) of the abovementioned strains: all of them were reduced by more than 7 log CFU ml-1 within 5 min of exposure either to NEW (63 mg l-1 active chlorine) or to NaClO solution (62 mg l-1 active chlorine). Then, stainless steel and glass surfaces were inoculated with the same strains and rinsed for 1 min in either NEW, NaClO solution or deionized water (control). In the first two cases, the populations of all the strains decreased by more than 6 log CFU 50 cm-2. No significant difference (P 0 05) was found between the final populations of each strain with regard to the treatment solutions (NEW or NaClO solution) or to the type of surface. Conclusions: NEW was revealed to be as effective as NaClO at significantly reducing the presence of pathogenic and spoilage bacteria (in this study, E. coli, L. monocytogenes, P. aeruginosa and S. aureus) on stainless steel and glass surfaces. Significance and Impact of the Study: NEW has the advantage of being safer than NaClO and easier to handle. Hence, it represents an advantageous alternative for the disinfection of surfaces in the food industry.



Journal Cover

Microbe(s): Total Microbial Count


Electrolysed oxidizing (EO) water is produced by passing a DC current through a weak sodium chloride solution, resulting in alkaline and acidic EO water. The goal of this research was to determine whether EO water could be used as an acceptable cleaning and disinfecting agent for materials used in pipeline milking systems. Small pieces of materials commonly used in milking systems were soiled using raw milk inoculated with a cocktail of four bacterial cultures similar to those commonly found in raw milk, and then cleaned by soaking in alkaline EO water followed by soaking in acidic EO water at various treatment times and temperatures. Effective treatment time and temperature combinations were determined by response surface design for a temperature range of 2560C and a time range of 520 min. Treated materials were evaluated by aerobic plate counts and ATP bioluminescence to assess the disinfecting and cleaning effectiveness of EO water. Most of the treatments at 60C and several treatments at lower temperatures successfully removed all detectable bacteria and ATP. Overall, the results of this study indicated that EO water has the potential to be used as a cleaning and disinfecting agent for materials used in milking systems.



Journal Cover

Microbe(s): Escherichia coli O157: H7, Listeria monocytogenes


Raw fish is prone to risk of microbial outbreaks due to contamination of pathogenic microorganisms. Escherichia coli O157:H7 and Listeria monocytogenes are among the pathogens associated with raw fish. Therefore, it is important to treat raw fish to inactivate pathogenic microorganisms. Electrolyzed oxidizing water is novel antimicrobial agent containing acidic solution with a pH of 2.6- 2.9, ORP of 1120 1180 mV, and 76-90 ppm free chlorine, and alkaline solution with a pH of 11.5 and ORP of 795 mV. This study was undertaken to evaluate the efficacy of electrolyzed oxidizing (EO) water for inactivation of E. coli O157:H7 and L. monocytogenes Scott A on the surfaces (muscle and skin surfaces) of inoculated salmon fillets. Inoculated salmon fillets were treated only with acidic EO water at 22C and 35C and sodium hypochlorite solution (90 ppm free chlorine) as control at 22C for 2, 4, 8, 16, 32, and 64 min, respectively. For the treatment with alkaline EO water followed by acidic EO water, a response surface model was developed to predict effective times in the range of 5-30 min and temperatures in the range of 22-35C for both alkaline and acidic water treatments. The acidic EO water treatments resulted in reductions of population of L. monocytogenes Scott A ranging from 0.40 log10 CFU/g (60 %) at 22oC to 1.12 log10 CFU/g (92.3 %) at 35oC. Treatment of inoculated salmon fillets in acidic EO water reduced E. coli O157:H7 populations by 0.49 log10 CFU/g (67 %) 22C and 1.07 log10 CFU/g (91.1 %) at 35C, respectively. Response surface analysis for alkaline EO water treatment followed by acidic treatment demonstrated that, maximum log reduction of 1.33 log10 CFU/g (95.3 %) for E. coli O157:H7 and 1.09 log10 CFU/g (91.9 %) for L. monocytogenes Scott A.



Journal Cover

Microbe(s): Salmonella enteritidis, Escherichia coli


During commercial processing, eggs are washed in an alkaline detergent and then rinsed with chlorine to reduce dirt, debris, and microorganism levels. The alkaline and acidic fractions of electrolyzed oxidizing (EO) water have the ability to fit into the 2-step commercial egg washing process easily if proven to be effective. Therefore, the efficacy of EO water to decontaminate Salmonella Enteritidis and Escherichia coli K12 on artificially inoculated shell eggs was investigated. For the in vitro study, eggs were soaked in alkaline EO water followed by soaking in acidic EO water at various temperatures and times. Treated eggs showed a reduction in population between > or = 0.6 to > or =2.6 log10 cfu/g of shell for S. Enteritidis and > or =0.9 and > or =2.6 log10 for E. coli K12. Log10 reductions of 1.7 and 2.0 for S. Enteritidis and E. coli K12, respectively, were observed for typical commercial detergent-sanitizer treatments, whereas log10 reductions of > or =2.1 and > or =2.3 for S. Enteritidis and E. coli K12, respectively, were achieved using the EO water treatment. For the pilot-scale study, both fractions of EO water were compared with the detergent-sanitizer treatment using E. coli K12. Log10 reductions of > or = 2.98 and > or = 2.91 were found using the EO water treatment and the detergent-sanitizer treatment, respectively. The effects of 2 treatments on egg quality were investigated. EO water and the detergent-sanitizer treatments did not significantly affect albumen height or eggshell strength however, there were significant affects on cuticle presence. These results indicate that EO water has the potential to be used as a sanitizing agent for the egg washing process.



Journal Cover

Microbe(s): Total Microbial Count


An examination was made of the efficacy of acidic electrolyzed water (AcEW, 30 ppm free available chlorine), ozonated water (5 ppm ozone), and a sodium hypochlorite solution (NaOCl, 150 ppm free available chlorine) for use as potential sanitizers of cucumbers and strawberries. AcEW and NaOCl reduced the aerobic mesophiles naturally present on cucumbers within 10 min by 1.4 and 1.2 log CFU per cucumber, respectively. The reduction by ozonated water (0.7 log CFU per cucumber) was significantly less than that of AcEW or NaOCl (P 0.05). Cucumbers washed in alkaline electrolyzed water for 5 min and then treated with AcEW for 5 min showed a reduction in aerobic mesophiles that was at least 2 log CFU per cucumber greater than that of other treatments (P 0.05). This treatment was also effective in reducing levels of coliform bacteria and fungi associated with cucumbers. All treatments offered greater microbial reduction on the cucumber surface than in the cucumber homogenate. Aerobic mesophiles associated with strawberries were reduced by less than 1 log CFU per strawberry after each treatment. Coliform bacteria and fungi associated with strawberries were reduced by 1.0 to 1.5 log CFU per strawberry after each treatment. Microbial reduction was approximately 0.5 log CFU per strawberry greater on the strawberry surface than in the strawberry homogenate. However, neither treatment was able to completely inactivate or remove the microorganisms from the surface of the cucumber or strawberry.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Listeria monocytogenes


The effects of chlorine and pH on the bactericidal activity of electrolyzed (EO) water were examined against Escherichia coli O157:H7 and Listeria monocytogenes. The residual chlorine concentration of EO water ranged from 0.1 to 5.0 mg/l, and the pH effect was examined at pH 3.0, 5.0, and 7.0. The bactericidal activity of EO water increased with residual chlorine concentration for both pathogens, and complete inactivation was achieved at residual chlorine levels equal to or higher than 1.0 mg/l. The results showed that both pathogens are very sensitive to chlorine, and residual chlorine level of EO water should be maintained at 1.0 mg/l or higher for practical applications. For each residual chlorine level, bactericidal activity of EO water increased with decreasing pH for both pathogens. However, with sufficient residual chlorine (greater than 2 mg/l), EO water can be applied in a pH range between 2.6 (original pH of EO water) and 7.0 while still achieving complete inactivation of E. coli O157:H7 and L. monocytogenes.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Salmonella


Cut lettuce dip-inoculated with Escherichia coli O157:H7 and Salmonella was treated with alkaline electrolyzed water (AlEW) at 20 C for 5 min, and subsequently washed with acidic electrolyzed water (AcEW) at 20 C for 5 min. Pre-treatment with AlEW resulted in an approximate 1.8 log10 cfu/g reduction of microbial populations, which was significantly (p 0.05) greater than microbial reductions resulting from other pre-treatment solutions, including distilled water and AcEW. Repeated AcEW treatment did not show a significant bacterial reduction. Mildly heated (50 C) sanitizers were compared with normal (20 C) or chilled (4 C) sanitizers for their bactericidal effect. Mildly heated AcEW and chlorinated water (200 ppm free available chlorine) with a treatment period of 1 or 5 min produced equal reductions of pathogenic bacteria of 3 log10 and 4 log10 cfu/g, respectively. The procedure of treating with mildly heated AlEW for 5 min, and subsequent washing with chilled (4 C) AcEW for period of 1 or 5 min resulted in 3 4 log10 cfu/g reductions of both the pathogenic bacterial counts on lettuce. Extending the mild heat pre-treatment time increased the bactericidal effect more than that observed from the subsequent washing time with chilled AcEW. The appearance of the mildly heated lettuce was not deteriorated after the treatment. In this study, we have illustrated the efficacious application of AlEW as a pre-wash agent, and the effective combined use of AlEW and AcEW.



Journal Cover

Microbe(s): Listeria monocytogenes, Escherichia coli O157:H7


Acidic electrolyzed water (AcEW) was used as frozen AcEW (AcEW-ice) for inactivation of Listeria monocytogenes and Escherichia coli O157:H7 on lettuce. AcEW-ice was prepared from AcEW with 20, 50, 100, and 200 ppm of available chlorine by freezing at 40 C and generated 30, 70, 150, and 240 ppm of chlorine gas (Cl2), respectively. The AcEW-ice was placed into styrene-foam containers with lettuce samples at 20 C for 24 h. Although AcEW-ice generating 30 ppm Cl2 had no effect on L. monocytogenes cell counts, AcEW-ice generating 70 to 240 ppm of Cl2 significantly (P < 0.05) reduced L. monocytogenes by ca. 1.5 log CFU/g. E. coli O157:H7 cell counts were reduced by 1.0 log CFU/g with AcEW-ice generating 30 ppm of Cl2. AcEW-ice generating 70 and 150 ppm of Cl2 reduced E. coli O157:H7 by 2.0 log CFU/g. Further significant reduction of E. coli O157:H7 (2.5 log CFU/g) was demonstrated by treatment with AcEW-ice generating 240 ppm of Cl2. However, treatment with AcEW-ice generating 240 ppm of Cl2 resulted in a physiological disorder resembling leaf burn. AcEW-ice that generated less than 150 ppm of Cl2 had no effect on the surface color of the lettuce. AcEW-ice, regardless of the concentration of the emission of Cl2, had no effect on the ascorbic acid content in the lettuce. The weight ratio of lettuce to AcEW-ice required was determined to be over 1:10. The bactericidal effect of AcEW-ice appeared within the first 2 h. The use of AcEW-ice provides simultaneously for low temperature storage and inactivation of bacteria.



Journal Cover

Microbe(s): Total Microbial Count


Aims: To evaluate the efficacy of electrolysed NaCl solutions (EW) for disinfecting bacterial isolates from carp, and the potential application of EW to reducing the bacterial load in whole carp and carp fillets. Methods and Results: EW was produced by using a two-compartment batch-type electrolysed apparatus. Pure cultures (in vitro), whole carp (skin surface) and carp fillets were treated with EW to detect its antimicrobial effects. The anodic solution [EW (+)] completely inhibited growth of the isolates. Furthermore, dipping the fish samples in EW (+) reduced the mean total count of aerobic bacteria on the skin of whole carp and in fillets by 2 8 and 2 0 log10, respectively. The cathodic solution [EW ( )] also reduced growth of the isolates from carp by ca 1 0 log10. Moreover, the total counts of aerobic bacteria in whole carp (on the skin) and fillets were reduced by 1 28 and 0 82 log10, respectively. Conclusions: EW (+) has a strong bactericidal effect on bacteria isolated from carp. Significance and Impact of the Study: Treatment with EW (+) could extend the shelf life of these fish.



Journal Cover

Microbe(s): Fungi, Penicillium expansum


Spores of Penicillium expansum, the primary organism responsible for the occurrence of patulin in apple juice, were exposed to electrolyzed oxidizing (EO) water in an aqueous suspension and on wounded apples. Full-strength and 50% EO water decreased viable spore populations by greater than 4 and 2 log units, respectively. Although EO water did not prevent lesion formation on fruit previously inoculated with P. expansum, cross-contamination of wounded apples from decayed fruit or by direct addition of spores to a simulated dump tank was substantially reduced. EO water, therefore, has potential as an alternative to chlorine disinfectants for controlling infection of apples by P. expansum during handling and processing operations.



Journal Cover

Microbe(s): Listeria monocytogenes, Salmonella typhimurium, Campylobacter coli


To date, the effectiveness of electrolyzed oxidizing (EO) water against bacteria associated with fresh pork has not been determined. Using a hand-held, food-grade garden sprayer, distilled water (W), chlorinated water (CL; 25 ppm), 2% lactic acid (LA), acidic EO water (EOA), or aged acidic EO water (AEOA; stored at 4 C for 24 h) was sprayed (15 s) onto pork bellies inoculated with feces containing Listeria monocytogenes (LM), Salmonella typhimurium (ST), and Campylobacter coli (CC). Remaining bacterial populations were determined immediately following treatment, after 2 days of aerobic storage, and again after 5 days of vacuum-packaged, refrigerated storage (day 7). While LA and EOA significantly reduced (p<0.05) populations of CC at days 0 and 7, there was no significant difference (p>0.05) between antimicrobial treatments when applied to pork inoculated with ST or LM. This study demonstrates that a 15-s spray with EOA has the ability to reduce CC associated with fresh pork surfaces. However, longer contact times may be necessary to reduce other microbial contaminants.



Journal Cover

Microbe(s): Salmonella enterica


Alfalfa sprouts have been implicated in several salmonellosis outbreaks in recent years. The disinfectant effects of acidic electrolyzed oxidizing (EO) water against Salmonella enterica both in an aqueous system and on artificially contaminated alfalfa seeds were determined. The optimum ratio of seeds to EO water was determined in order to maximize the antimicrobial effect of EO water. Seeds were combined with EO water at ratios (wt/vol) of 1:4, 1:10, 1:20, 1:40, and 1:100, and the characteristics of EO water (pH, oxidation reduction potential [ORP], and free chlorine concentration)were determined. When the ratio of seeds to EO water was increased from 1:4 to 1:100, the pH decreased from 3.82 to 2.63, while the ORP increased from +455 to +1,073 mV. EO water (with a pH of 2.54 to 2.38 and an ORP of +1,083 to +1,092 mV) exhibited strong potential for the inactivation of S. enterica in an aqueous system (producing a reduction of at least 6.6 log CFU/ml). Treatment of artificially contaminated alfalfa seeds with EO water at a seed to EO water ratio of 1:100 for 15 and 60 min significantly reduced Salmonella populations by 2.04 and 1.96 log CFU/g, respectively (P < 0.05), while a Butterfield s buffer wash decreased Salmonella populations by 0.18 and 0.23 log CFU/g, respectively. After treatment, EO water was Salmonella negative by enrichment with or without neutralization. Germination of seeds was not significantly affected (P > 0.05) by treatment for up to 60 min in electrolyzed water. The uptake of liquid into the seeds was influenced by the internal gas composition (air, N2, or O2) of seeds before the liquid was added.



Journal Cover

Microbe(s): Salmonella


Studies have demonstrated that electrolyzed oxidizing (EO) water is effective in reducing foodborne pathogens on fresh produce. This study was undertaken to determine the efficacy of EO water and two different forms of chlorinated water (chlorine water from Cl2 and Ca(OCl)2 as sources of chlorine) in inactivating Salmonella on alfalfa seeds and sprouts. Tengram sets of alfalfa seeds inoculated with a five-strain cocktail of Salmonella (6.3 104 CFU/g) were subjected to 90 ml of deionized water (control), EO water (84 mg/liter of active chlorine), chlorine water (84 mg/liter of active chlorine), and Ca(OCl)2 solutions at 90 and 20,000 mg/liter of active chlorine for 10 min at 24 2 C. The application of EO water, chlorinated water, and 90 mg/liter of Ca(OCl)2 to alfalfa seeds for 10 min reduced initial populations of Salmonella by at least 1.5 log10 CFU/g. For seed sprouting, alfalfa seeds were soaked in the different treatment solutions described above for 3 h. Ca(OCl)2 (20,000 mg/liter of active chlorine) was the most effective treatment in reducing the populations of Salmonella and non-Salmonella microflora (4.6 and 7.0 log10 CFU/g, respectively). However, the use of high concentrations of chlorine generates worker safety concerns. Also, the Ca(OCl)2 treatment significantly reduced seed germination rates (70% versus 90 to 96%). For alfalfa sprouts, higher bacterial populations were recovered from treated sprouts containing seed coats than from sprouts with seed coats removed. The effectiveness of EO water improved when soaking treatments were applied to sprouts in conjunction with sonication and seed coat removal. The combined treatment achieved 2.3- and 1.5-log10 CFU/g greater reductions than EO water alone in populations of Salmonella and non-Salmonella microflora, respectively. This combination treatment resulted in a 3.3-log10 CFU/g greater reduction in Salmonella populations than the control (deionized water) treatment.



Journal Cover

Microbe(s): Salmonella typhimurium, Staphylococcus aureus, and Listeria monocytogenes, Escherichia coli


Research was conducted to compare the effectiveness of electrolyzed oxidative (EO) water applied using an electrostatic spraying system (ESS) for killing populations of bacteria that are of concern to the poultry industry. Populations of pathogenic bacteria (Salmonella typhimurium, Staphylococcus aureus, and Listeria monocytogenes), and the indicator bacterium Escherichia coli were applied to eggs and allowed to attach for 1 h. EO water completely eliminated all Salmonella typhimurium on 3, 7, 1, and 8 out of 15 eggs in Repetitions (Rep) 1, 2, 3, and 4, respectively, even when very high inoculations were used. EO water completely eliminated all Staphylococcus aureus on 12, 11, 12, and 11 out of 15 eggs in Rep 1, 2, 3, and 4, respectively. EO water completely eliminated all Listeria monocytogenes on 8, 13, 12, and 14 out of 15 eggs in Reps 1, 2, 3, and 4, respectively. EO water completely eliminated all Escherichia coli on 9, 11, 15, and 11 out of 15 eggs in Reps 1, 2, 3, and 4, respectively. Even when very high concentrations of bacteria were inoculated onto eggs (many times higher than would be encountered in industrial situations), EO water was found to be effective when used in conjunction with electrostatic spraying for eliminating pathogenic and indicator populations of bacteria from hatching eggs.



Journal Cover

Microbe(s): Escherichia coli O157: H7, Salmonella Enteritidis, Listeria monocytogenes


A study was conducted to evaluate the efficacy of electrolyzed acidic water, 200-ppm chlorine water, and sterile distilled water in killing Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes on the surfaces of spot-inoculated tomatoes. Inoculated tomatoes were sprayed with electrolyzed acidic water, 200-ppm chlorine water, and sterile distilled water (control) and rubbed by hand for 40 s. Populations of E. coli O157:H7, Salmonella, and L. monocytogenes in the rinse water and in the peptone wash solution were determined. Treatment with 200-ppm chlorine water and electrolyzed acidic water resulted in 4.87- and 7.85-log10 reductions, respectively, in Escherichia coli O157:H7 counts and 4.69- and 7.46-log10 reductions, respectively, in Salmonella counts. Treatment with 200-ppm chlorine water and electrolyzed acidic water reduced the number of L. monocytogenes by 4.76 and 7.54 log10 CFU per tomato, respectively. This study s findings suggest that electrolyzed acidic water could be useful in controlling pathogenic microorganisms on fresh produce.



Journal Cover

Microbe(s): Total Microbial Count


The use of electrolyzed water for washing and sanitizing eggshells and an egg washer was evaluated for its effectiveness at a Grade & Packing Center adjacent to a poultry farm for a period of nine months. The test results indicate improvement in sanitation control. Dissolving yolks of broken eggs with electrolyzed alkaline water followed by sanitizing with electrolyzed acidic water produced favorable effects. Also, the use of electrolyzed water has an advantage in that it simplifies the conventional washing and sanitizing process and motivates operators to employ the process more frequently. This sense developed in operators may be a significant factor in the improvement of sanitation control.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Salmonella enterica, Listeria monocytogenes


Fresh-cut lettuce samples inoculated with S. Typhimurium, E. coli O157:H7 or L. monocytogenes were dipped into 300 ppm electrolyzed water (EW) at pH 4 to 9 and 30 C for 5 min. The effects of treatment pH on bacterial reduction and visual quality of the lettuce were determined. The treatments at pH 4 and 8 resulted in the most effective inactivation of E. coli O157:H7, but the effect of pH was not significant (P > 0.05) for S. Typhimurium and L. monocytogenes. The treatment at pH 7 retained the best visual quality of lettuce, and achieved a reduction of approximately 2 log CFU/g for above 3 bacteria.



Journal Cover

Microbe(s): Escherichia coli O157: H7, Salmonella Enteritidis, and Listeria monocytogenes


A study was conducted to evaluate the efficacy of electrolyzed acidic water, 200-ppm chlorine water, and sterile distilled water in killing Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes on the surfaces of spot-inoculated tomatoes. Inoculated tomatoes were sprayed with electrolyzed acidic water, 200-ppm chlorine water, and sterile distilled water (control) and rubbed by hand for 40 s. Populations of E. coli O157:H7, Salmonella, and L. monocytogenes in the rinse water and in the peptone wash solution were determined. Treatment with 200-ppm chlorine water and electrolyzed acidic water resulted in 4.87- and 7.85-log10 reductions, respectively, in Escherichia coli O157:H7 counts and 4.69- and 7.46-log10 reductions, respectively, in Salmonella counts. Treatment with 200-ppm chlorine water and electrolyzed acidic water reduced the number of L. monocytogenes by 4.76 and 7.54 log10 CFU per tomato, respectively. This study s findings suggest that electrolyzed acidic water could be useful in controlling pathogenic microorganisms on fresh produce.



Journal Cover

Microbe(s): Salmonella Typhimurium, Listeria monocytogenes


Electrolyzed oxidizing (EO) water has proved to be effective against foodborne pathogens attached to cutting boards and poultry surfaces and against spoilage organisms on vegetables; however, its levels of effectiveness against Listeria monocytogenes and Salmonella Typhimurium in cell suspensions have not been compared with those of other treatments. In this study, the oxidation reduction potentials (ORPs), chlorine concentrations, and pHs of acidic and basic EO water were monitored for 3 days at 4 and 25 C after generation. There were no differences between the pHs or ORPs of acidic and basic EO waters stored at 4 or 25 C. However, the free chlorine concentration in acidic EO water stored at 4 C increased after 24 h. In contrast, the free chlorine concentration in acidic EO water stored at 25 C decreased after one day. Cell suspensions of Salmonella Typhimurium and L. monocytogenes were treated with distilled water, chlorinated water (20 ppm), acidified chlorinated water (20 ppm, 4.5 pH), acidic EO water (EOA), basic EO water (EOB), or acidic EO water that was aged at 4 C for 24 h (AEOA) for up to 15 min at either 4 or 25 C. The largest reductions observed were those following treatments carried out at 25 C. EOA and AEOA treatments at both temperatures significantly reduced Salmonella Typhimurium populations by >8 log10 CFU/ml. EOA and AEOA treatments effectively reduced L. monocytogenes populations by >8 log10 CFU/ml at 25 C. These results demonstrate the stability of EO water under different conditions and that EO water effectively reduced Salmonella Typhimurium and L. monocytogenes populations in cell suspensions.



Journal Cover

Microbe(s): Salmonella enteritidis, Listeria monocytogenes


Aims: To determine the efficacy of neutral electrolyzed water (NEW) in killing Escherichia coli O157:H7, Salmonella enteritidis and Listeria monocytogenes, as well as nonpathogenic E. coli, on the surface of tomatoes, and to evaluate the effect of rinsing with NEW on the organoleptic characteristics of the tomatoes. Methods and Results: The bactericidal activity of NEW, containing 444 or 89 mg l-1 of active chlorine, was evaluated over pure cultures (8-5 log CFU ml-1) of the above-mentioned strains. All of them were reduced by more than 6 log CFU ml-1 within 5 min of exposure to NEW. Fresh tomatoes were surface-inoculated with the same strains, and rinsed in NEW (89 mg l-1 of active chlorine) or in deionized sterile water (control), for 30 or 60 s. In the NEW treatments, independent of the strain and of the treatment time, an initial surface population of about 5 log CFU sq.cm-1 was reduced to <1 log CFU sq.cm-1, and no cells were detected in the washing solution by plating procedure. A sensory evaluation was conducted to ascertain possible alterations in organoleptic qualities, yielding no significant differences with regard to untreated tomatoes. Significance and Impact of the Study: Rinsing in NEW reveals as an effective method to control the presence of E. coli O157:H7, S. enteritidis and L. monocytogenes on the surface of fresh tomatoes, without affecting their organoleptic characteristics. This indicates its potential application for the decontamination of fresh produce surfaces.



Journal Cover

Microbe(s): Total Microbial Count


Milking systems, electrolyzed oxidizing water, CIP, clean in place, ATP bioluminescence Electrolyzed oxidizing (EO) water is a technology that electrolyzes a weak sodium chloride solution into sodium and chlorine, resulting in two solutions alkaline and acid. The goal of this research is to determine if EO water is an acceptable cleaning agent for pipeline milking systems. After constructing 1.5 inch-diameter pipeline milking system, the system was soiled using raw milk that had been spiked with common raw milk microorganisms. After soiling, the system was rinsed with warm water and then evaluated in several locations for initial counts. To evaluate the level of soiling, the surfaces were evaluated using an ATP bioluminescence method. The milk contact surfaces were also swabbed for microbial analysis. The pipeline system was then washed with an alkaline EO water treatment followed by an acidic EO water treatment. After treatment, the effectiveness of the treatment was evaluated by ATP bioluminescence and microbiological analysis. First, a 10 min wash with 60C alkaline water followed by a 10 min wash with 60C acid water successfully removed all detectable bacteria and ATP from the non-porous milk contact surfaces. Shorter treatment times (5 and 7.5 min) with EO water were also tested, along with a control treatment using conventional dairy cleaning chemicals. Using ANOVA, there were no significant differences between the EO water treatments and the conventional treatment, however the 5-min EO water treatment was significantly less effective than the 10-min treatment.



Journal Cover

Microbe(s): Campylobacter jejuni


The effectiveness of electrolyzed (EO) water for killing Campylobacter jejuni on poultry was evaluated. Complete inactivation of C. jejuni in pure culture occurred within 10 s after exposure to EO or chlorinated water, both of which contained 50 mg/l of residual chlorine. A strong bactericidal activity was also observed on the diluted EO water (containing 25 mg/l of residual chlorine) and the mean population of C. jejuni was reduced to less than 10 CFU/ml (detected only by enrichment for 48 h) after 10-s treatment. The diluted chlorine water (25 mg/l residual chlorine) was less effective than the diluted EO water for inactivation of C. jejuni. EO water was further evaluated for its effectiveness in reducing C. jejuni on chicken during washing. EO water treatment was equally effective as chlorinated water and both achieved reduction of C. jejuni by about 3 log10 CFU/g on chicken, whereas deionized water (control) treatment resulted in only 1 log10 CFU/g reduction. No viable cells of C. jejuni were recovered in EO and chlorinated water after washing treatment, whereas high populations of C. jejuni (4 log10 CFU/ml) were recovered in the wash solution after the control treatment. Our study demonstrated that EO water was very effective not only in reducing the populations of C. jejuni on chicken, but also could prevent cross-contamination of processing environments.



Journal Cover

Microbe(s): Salmonella spp.


Foodborne pathogens in cell suspensions or attached to surfaces can be reduced by electrolyzed oxidizing (EO) water; however, the use of EO water against pathogens associated with poultry has not been explored. In this study, acidic EO water [EO-A; pH 2.6, chlorine (CL) 20 to 50 ppm, and oxidation-reduction potential (ORP) of 1,150 mV], basic EO water (EO-B; pH 11.6, ORP of -795 mV), CL, ozonated water (OZ), acetic acid (AA), or trisodium phosphate (TSP) was applied to broiler carcasses inoculated with Salmonella Typhimurium (ST) and submerged (4 C, 45 min), spray-washed (85 psi, 25 C, 15 s), or subjected to multiple interventions (EO-B spray, immersed in EO-A; AA or TSP spray, immersed in CL). Remaining bacterial populations were determined and compared at Day 0 and 7 of aerobic, refrigerated storage. At Day 0, submersion in TSP and AA reduced ST 1.41 log10, whereas EO-A water reduced ST approximately 0.86 log10. After 7 d of storage, EO-A water, OZ, TSP, and AA reduced ST, with detection only after selective enrichment. Spray-washing treatments with any of the compounds did not reduce ST at Day 0. After 7 d of storage, TSP, AA, and EO-A water reduced ST 2.17, 2.31, and 1.06 log10, respectively. ST was reduced 2.11 log10 immediately following the multiple interventions, 3.81 log10 after 7 d of storage. Although effective against ST, TSP and AA are costly and adversely affect the environment. This study demonstrates that EO water can reduce ST on poultry surfaces following extended refrigerated storage.



Journal Cover

Microbe(s): Enterobacter aerogenes, Staphylococcus aureus


The effectiveness of electrolyzed (EO) water at killing Enterobacter aerogenes and Staphylococcus aureus in pure culture was evaluated. One milliliter (approximately 109 CFU/ml) of each bacterium was subjected to 9 ml of EO water or control water (EO water containing 10% neutralizing buffer) at room temperature for 30 s. Inactivation (reduction of >9 log10 CFU/ml) of both pathogens occurred within 30 s after exposure to EO water containing approximately 25 or 50 mg of residual chlorine per liter. The effectiveness of EO water in reducing E. aerogenes and S. aureus on different surfaces (glass, stainless steel, glazed ceramic tile, unglazed ceramic tile, and vitreous china) was also evaluated. After immersion of the tested surfaces in EO water for 5 min without agitation, populations of E. aerogenes and S. aureus were reduced by 2.2 to 2.4 log10 CFU/cm2 and by 1.7 to 1.9 log10 CFU/cm2, respectively, whereas washing with control water resulted in a reduction of only 0.1 to 0.3 log10 CFU/cm2. The washing of tested surfaces in EO water with agitation (50 rpm) reduced populations of viable cells on the tested surfaces to <1 CFU/cm2. For the control water treatment with agitation, the surviving numbers of both strains on the tested surfaces were approximately 3 log10 CFU/cm2. No viable cells of either strain were observed in the EO water after treatment, regardless of agitation. However, large populations of both pathogens were recovered from control wash solution after treatment.



Journal Cover

Microbe(s): Botryosphaeria berengeriana


Chlorination presents one of the few chemical options available to help manage postharvest decay. Electrolyzed oxidizing (EO) water, containing free chlorine, is the product of a new concept developed by scientists in Japan. The effectiveness of pear (Pyrus communis L.) immersion in EO water on the control of Bot. rot on European pear, cv. La-France, was investigated. Four independent experiments were carried out. A wound was found necessary for infection. Wounded fruit were inoculated with 20 l spore suspension of 5 105 conidia/ml of Botryosphaeria berengeriana, incubated for 4 h, immersed in EO water, and held at 20 C, 90% relative humidity (simulated retail conditions) for ripening and disease development. No chlorine-induced phytotoxicity was observed on the treated fruit. EO water suppressed the incidence and disease severity. The minimum incidence and severity were recorded for a 10-min immersion period. This study revealed that EO water is an effective surface sanitizer.



Journal Cover

Microbe(s): Total Microbial Count


We investigated the effects of frozen acidic electrolyzed water (AcEW) on lettuce during storage in a styrene-foam container. The lettuce was kept at 2 to 3 degrees C for 24 h. Populations of aerobic bacteria associated with lettuce packed in frozen AcEW were reduced by 1.5 log CFU/g after storage for 24 h. With frozen tap water, no microorganism populations tested in this study were reduced. A frozen mixture of AcEW and alkaline electrolyzed water (AlEW) also failed to reduce populations of microorganisms associated with lettuce. Although chlorine gas was produced by frozen AcEW, it was not produced by the AcEW-AlEW mixture. This result indicates that the main factor in the decontaminative effect of frozen AcEW was the production of chlorine gas. Accordingly, low-temperature storage and decontamination could be achieved simultaneously with frozen AcEW during distribution.



Journal Cover

Microbe(s): Total Microbial Count


The disinfectant effect of acidic electrolyzed water (AcEW), ozonated water, and sodium hypochlorite (NaOCl) solution on lettuce was examined. AcEW (pH 2.6; oxidation reduction potential, 1140 mV; 30 ppm of available chlorine) and NaOCl solution (150 ppm of available chlorine) reduced viable aerobes in lettuce by 2 log CFU/g within 10 min. For lettuce washed in alkaline electrolyzed water (AlEW) for 1 min and then disinfected in AcEW for 1 min, viable aerobes were reduced by 2 log CFU/g. On the other hand, ozonated water containing 5 ppm of ozone reduced viable aerobes in lettuce 1.5 log CFU/g within 10 min. It was discovered that AcEW showed a higher disinfectant effect than did ozonated water significantly at P < 0.05. It was confirmed by swabbing test that AcEW, ozonated water, and NaOCl solution removed aerobic bacteria, coliform bacteria, molds, and yeasts on the surface of lettuce. Therefore, residual microorganisms after the decontamination of lettuce were either in the inside of the cellular tissue, such as the stomata, or making biofilm on the surface of lettuce. Biofilms were observed by a scanning electron microscope on the surface of the lettuce treated with AcEW. Moreover, it was shown that the spores of bacteria on the surface were not removed by any treatment in this study. However, it was also observed that the surface structure of lettuce was not damaged by any treatment in this study. Thus, the use of AcEW for decontamination of fresh lettuce was suggested to be an effective means of controlling microorganisms.



Journal Cover

Microbe(s): Listeria monocytogenes, Flavobacterium spp.


Aims: To determine the effect of chlorine on mixed bacterial biofilms on stainless steel (SS) and conveyor belt surfaces. Methods and Results: Biofilms were exposed to pH-adjusted (6.5) and non-pH-adjusted solutions of chlorine (200, 400 and 600 ppm) for either 2, 10 or 20 min and survivors enumerated. There were significant differences in cell death relating to chlorine concentration and exposure time for the cells attached to the SS, with solutions adjusted to pH 6.5 being more effective at reducing numbers. In contrast, on conveyor belt surfaces cell numbers decreased by less than two logs after 20 min regardless of treatment. Conclusions: Chlorine effectiveness is dependent on its concentration, solution pH, exposure time, the nature of the surface and the microbial species present. Significance and Impact of Study: In the interests of food safety it is important that sanitizer users are aware of the conditions that effect their performance.



Journal Cover

Microbe(s): Staphylococcus, Staphylococcal enterotoxin-A


Electrolyzed anodic NaCl solutions [EW(+)], prepared by the electrolysis of 0.1% NaCl, have been shown to instantly inactivate most pathogens that cause food-borne disease. Elimination of food-borne pathogens does not necessarily guarantee food safety because enterotoxins produced by pathogens may remain active. We have tested whether EW(+) can inactivate Staphylococcal enterotoxin A (SEA), one of the major enterotoxins responsible for food poisoning. Fixed quantities of SEA were mixed with increasing molar ratios of EW(+), and SEA was evaluated by reversed-phase passive latex agglutination (RPLA) test, immunoassay, native polyacrylamide gel electrophoresis (PAGE), and amino acid analysis after 30 min incubations. Exposure of 70 ng, or 2.6 pmol, of SEA in 25 L of PBS to a 10-fold volume of EW(+), or ca. 64.6 103-fold molar excess of HOCl in EW(+), caused a loss of immuno-reactivity between SEA and a specific anti-SEA antibody. Native PAGE indicated that EW(+) caused fragmentation of SEA, and amino acid analysis indicated a loss in amino acid content, in particular Met, Tyr, Ile, Asn, and Asp. Staphylococcal enterotoxin-A excreted into culture broth was also inactivated by exposure to an excess molar ratio of EW(+). Thus, EW(+) may be a useful management tool to ensure food hygiene by food processing industries.



Journal Cover

Microbe(s): Fungi, Aspergillus parasiticus, aflatoxin B1


Electrolysis of a 0.1% (17.1 mM) solution of NaCl using separate anode and cathode compartments gives rise to solutions containing active chemical species. The strongly acidic anode solution (EW(+)) has high levels of dissolved oxygen and available chlorine in a form of hypochlorous acid (HOCl) with a strong potential for sterilization, which we have investigated here. Exposing Aspergillus parasiticus at an initial density of 103spores in 10 L to a 50-fold volume (500 L) of EW(+) containing ca. 390 mol HOCl for 15 min at room temperature resulted in a complete inhibition of fungal growth, whereas the cathode solution (EW( )) had negligible inhibitory effects. Moreover, the mutagenicity of aflatoxin B1 (AFB1) for Salmonella typhimurium TA-98 and TA-100 strains was strongly reduced after AFB1 exposure to the EW(+) but not with the EW( ). In high-performance liquid chromatography analysis, the peak corresponding to AFB1 disappeared after treatment with the EW(+), indicating decomposition of the aflatoxin. In contrast, the routinely used disinfectant sodium hypochlorite, NaOCl, of the same available chlorine content as that of EW(+) but in a different chemical form, hypochlorite (OCl-) ion, did not decompose AFB1 at pH 11. However, NaOCl did decompose AFB1 at pH 3, which indicated that the principle chemical formula to participate in the decomposition of AFB1 is not the OCl- ion but HOCl. Furthermore, because the decomposition of AFB1 was suppressed by pretreating the EW(+) with the OH radical scavenger thiourea, the chemical species responsible for the AFB1-decomposing property of the EW(+) should be at least due to the OH radical originated from HOCl. The OH in EW(+) was proved by electron spin resonance analysis.



Journal Cover

Microbe(s): Escherichia coli


Recently, several reports about sterilization effect of electrolyzed water have been published. The electrolyzed water is expected as one of attractive application for sanitation of fresh food, however, to install this electrolyzed water, we have to clear the potential of the microorganism control for real food. In this paper, we try to reveal the mechanism of the microorganism control, and also try to check the food quality change during the treatment. Therefore, to evaluate the effect of the electrolyzed water, we examined the several test for making sterilization mechanism clear and observed microorganism behavior on food surface. At first, for the purpose of making sterilization effects clear in vitro condition, we did microorganism test with several injection ratio and number. Then, we studied the effects of catalase on the enumeration of stressed Escherichia coli cells after acidic electrolyzed water treatment. Moreover, we studied sterilization effect of acidic electrolyzed water for E. coli on an agar block on the assumption as one of food model. In addition, we studied sterilization effects for sliced raw tuna as one sample of food surface treatment. The change in the quality of food surface was observed by scanning electron microscope, color meter and so on. Steriliaation effects are dependent the condition of injection ratio and mixing numbers. These results suggest that it is important to keep available chlorine concentration for keeping the potential to the microorganisms control. The increasing of E. coli number with the addition of catalase was suggested that the weak concentration of electrolyzed water gave the injured microbes. The Observation of cultivated E. coli behavior on agar block showed the microorganism behavior. Acidic electrolyzed water sterilizes microorganisms on sliced raw tuna, however, after treatment, the color change of surface of tuna and the protein denaturation were observed. These results suggest that when the electrolyzed water treatment is applied to control the microorganism on surface, the effect against food surface must be considered.



Journal Cover

Microbe(s): Escherichia coli O157: H7


Survival of Escherichia coli O157:H7 was studied on strawberry, a fruit that is not usually washed during production, harvest, or postharvest handling. Two strains of the bacteria were tested separately on the fruit surface or injected into the fruit. Both strains of E. coli O157:H7 survived externally and internally at 23 C for 24 h and at 10, 5, and 20 C for 3 days. The largest reduction in bacterial population occurred at 20 C and on the fruit surface during refrigeration. In all experiments, the bacteria inside the fruit either survived as well as or better than bacteria on the surface, and ATCC 43895 frequently exhibited greater survival than did ATCC 35150. Two strains of E. coli also survived at 23 C on the surface and particularly inside strawberry fruit. Chemical agents in aqueous solution comprising NaOCl (100 and 200 ppm), Tween 80 (100 and 200 ppm), acetic acid (2 and 5%), Na3PO4 (2 and 5%), and H2O2 (1 and 3%) were studied for their effects on reduction of surface-inoculated (108 CFU/ml) E. coli O157:H7 populations on strawberry fruit. Dipping the inoculated fruit in water alone reduced the pathogen population about 0.8 log unit. None of the compounds with the exception of H2O2 exhibited more than a 2-log CFU/g reduction of the bacteria on the fruit surface. Three percent H2O2, the most effective chemical treatment, reduced the bacterial population on strawberries by about 2.2 log CFU/g.



Journal Cover

Microbe(s): Total Microbial Count, Coliforms, Bacillus cereus


Effects of storage temperature (1, 5, and 10 C) on growth of microbial populations (total aerobic bacteria, coliform bacteria, Bacillus cereus, and psychrotrophic bacteria) on acidic electrolyzed water (AcEW)-treated fresh-cut lettuce and cabbage were determined. A modified Gompertz function was used to describe the kinetics of microbial growth. Growth data were analyzed using regression analysis to generate best-fit modified Gompertz equations, which were subsequently used to calculate lag time, exponential growth rate, and generation time. The data indicated that the growth kinetics of each bacterium were dependent on storage temperature, except at 1 C storage. At 1 C storage, no increases were observed in bacterial populations. Treatment of vegetables with AcEW produced a decrease in initial microbial populations. However, subsequent growth rates were higher than on nontreated vegetables. The recovery time required by the reduced microbial population to reach the initial (treated with tap water [TW]) population was also determined in this study, with the recovery time of the microbial population at 10 C being <3 days. The benefits of reducing the initial microbial populations on fresh-cut vegetables were greatly affected by storage temperature. Results from this study could be used to predict microbial quality of fresh-cut lettuce and cabbage throughout their distribution.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Listeria monocytogenes


The efficacy of electrolyzed oxidizing (EO) and acidified chlorinated water (45 ppm residual chlorine) was evaluated in killing Escherichia coli O157:H7 and Listeria monocytogenes on lettuce. After surface inoculation, each leaf was immersed in 1.5 L of EO or acidified chlorinated water for 1 or 3 min at 22 C. Compared to a water wash only, the EO water washes significantly decreased mean populations of E. coli O157:H7 and L. monocytogenes by 2.41 and 2.65 log10 CFU per lettuce leaf for 3 min treatments, respectively (p < 0.05). However, the difference between the bactericidal activity of EO and acidified chlorinated waters was not significant (p > 0.05). Change in the quality of lettuce subjected to the different wash treatments was not significant at the end of 2 wk of storage.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Listeria monocytogenes


The efficacy of electrolyzed oxidizing (EO) and acidified chlorinated water (45 ppm residual chlorine) was evaluated in killing Escherichia coli O157:H7 and Listeria monocytogenes on lettuce. After surface inoculation, each leaf was immersed in 1.5 L of EO or acidified chlorinated water for 1 or 3 min at 22 C. Compared to a water wash only, the EO water washes significantly decreased mean populations of E. coli O157:H7 and L. monocytogenes by 2.41 and 2.65 log10 CFU per lettuce leaf for 3 min treatments, respectively (p < 0.05). However, the difference between the bactericidal activity of EO and acidified chlorinated waters was not significant (p > 0.05). Change in the quality of lettuce subjected to the different wash treatments was not significant at the end of 2 wk of storage.



Journal Cover

Microbe(s): Total Microbial Count


The disinfectant effect of acidic electrolyzed water (AcEW), ozonated water, and sodium hypochlorite (NaOCl) solution on lettuce was examined. AcEW (pH 2.6; oxidation reduction potential, 1140 mV; 30 ppm of available chlorine) and NaOCl solution (150 ppm of available chlorine) reduced viable aerobes in lettuce by 2 log CFU/g within 10 min. For lettuce washed in alkaline electrolyzed water (AlEW) for 1 min and then disinfected in AcEW for 1 min, viable aerobes were reduced by 2 log CFU/g. On the other hand, ozonated water containing 5 ppm of ozone reduced viable aerobes in lettuce 1.5 log CFU/g within 10 min. It was discovered that AcEW showed a higher disinfectant effect than did ozonated water significantly at P < 0.05. It was confirmed by swabbing test that AcEW, ozonated water, and NaOCl solution removed aerobic bacteria, coliform bacteria, molds, and yeasts on the surface of lettuce. Therefore, residual microorganisms after the decontamination of lettuce were either in the inside of the cellular tissue, such as the stomata, or making biofilm on the surface of lettuce. Biofilms were observed by a scanning electron microscope on the surface of the lettuce treated with AcEW. Moreover, it was shown that the spores of bacteria on the surface were not removed by any treatment in this study. However, it was also observed that the surface structure of lettuce was not damaged by any treatment in this study. Thus, the use of AcEW for decontamination of fresh lettuce was suggested to be an effective means of controlling microorganisms.



Journal Cover

Microbe(s): Listeria monocytogenes


An electrochemical treatment system consisting of a pulsed electrical power supply and an electrical treatment chamber was designed and evaluated for inactivation Listeria monocytogenes in recirculated brine for chilling processed bacons. The brine was tested under different currents and temperatures. An average D-value of 1.61 min in the storage tank could be achieved at 7 mA/cm3 current with the fresh brine (t = 0 h). For the spent brine (t = 20 h), the D-value was 2.5 min in the treatment chamber at 35 mA/cm3. The average D-values in the treatment chamber were approximately 2.5 min at all three temperatures (4, 0, -8 8C) at 35 mA/cm3.



Journal Cover

Microbe(s): Listeria monocytogenes


This study investigates the resistance of Listeria monocytogenes biofilms on stainless steel surfaces to electrolyzed oxidizing (EO) water. A direct agar overlay method was used to estimate the attached bacteria on stainless steel coupons after an EO water treatment. A scraping method was also used to quantify the adherent cell populations after the EO water treatment. The stainless steel surface allowed 10 to 15% of the surface area to be covered by Listeria biofilm when the inoculated stainless steel coupon was incubated in 10% tryptic soy broth (TSB) at 23C for 48 h. When the stainless steel coupons containing adherent cells were treated with EO water (56 mg/L of residual chlorine) for 10, 30, 60, 180, and 300 s, adherent cell populations (10.3 log10 CFU/coupon) were reduced with increasing treatment time. Although the direct agar overlay methods do not quantify survival of single bacteria, only one to five cell clumps per coupon survived after 300 s of the EO water treatment. Using the scraping method, the adherent cell population on the stainless steel coupons was reduced by about 9 log cycles after 300 s of EO water treatment.



Journal Cover

Microbe(s): Escherichia coli O157:H7


This study investigates the properties of electrolyzed oxidizing (EO) water for the inactivation of pathogen and to evaluate the chemically modified solutions possessing properties similar to EO water in killing Escherichia coli O157:H7. A five-strain cocktail (1010 CFU/ml) of E. coli O157:H7 was subjected to deionized water (control), EO water with 10 mg/liter residual chlorine (J.A.W-EO water), EO water with 56 mg/liter residual chlorine (ROX-EO water), and chemically modified solutions. Inactivation (8.88 log10 CFU/ml reduction) of E. coli O157:H7 occurred within 30 s after application of EO water and chemically modified solutions containing chlorine and 1% bromine. Iron was added to EO or chemically modified solutions to reduce oxidation reduction potential (ORP) readings and neutralizing buffer was added to neutralize chlorine. J.A.W-EO water with 100 mg/liter iron, acetic acid solution, and chemically modified solutions containing neutralizing buffer or 100 mg/liter iron were ineffective in reducing the bacteria population. ROX-EO water with 100 mg/liter iron was the only solution still effective in inactivation of E. coli O157:H7 and having high ORP readings regardless of residual chlorine. These results suggest that it is possible to simulate EO water by chemically modifying deionized water and ORP of the solution may be the primary factor affecting microbial inactivation.



Journal Cover

Microbe(s): Bacillus cereus


To identify the primary component responsible in electrolyzed oxidizing (EO) water for inactivation, this study determined the concentrations of hypochlorous acid (HOCl) and hypochlorite ions (OCl-) and related those concentrations to the microbicidal activity of the water. The ultraviolet absorption spectra were used to determine the concentrations of HOCl and OCl- in EO water and the chemical equilibrium of these species with change in pH and amperage. EO water generated at higher amperage contained a higher chlorine concentration. The maximum concentration of HOCl was observed around pH 4 where the maximum log reduction (2.3 log10 CFU/ml) of Bacillus cereus F4431/73 vegetative cells also occurred. The high correlation (r = 0.95) between HOCl concentrations and bactericidal effectiveness of EO water supports HOCl s role as the primary inactivation agent. Caution should be taken with standard titrimetric methods for measurement of chlorine as they cannot differentiate the levels of HOCl present in EO water of varying pHs.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Listeria monocytogenes, Bacillus cereus


This study was undertaken to evaluate the efficacy of electrolyzed oxidizing (EO) and chemically modified water with properties similar to the EO water for inactivation of different types of foodborne pathogens (Escherichia coli O157:H7, Listeria monocytogenes and Bacillus cereus). A five-strain cocktail of each microorganism was exposed to deionized water (control), EO water and chemically modified water. To evaluate the effect of individual properties (pH, oxidation-reduction potential (ORP) and residual chlorine) of treatment solutions on microbial inactivation, iron was added to reduce ORP readings and neutralizing buffer was added to neutralize chlorine. Inactivation of E. coli O157:H7 occurred within 30 s after application of JAW EO water with 10 mg/l residual chlorine and chemically modified solutions containing 13 mg/l residual chlorine. Inactivation of Gram-positive and -negative microorganisms occurred within 10 s after application of ROX EO water with 56 mg/l residual chlorine and chemically modified solutions containing 60 mg/l residual chlorine. B. cereus was more resistant to the treatments than E. coli O157:H7 and L. monocytogenes and only 3 log10 reductions were achieved after 10 s of ROX EO water treatment. B. cereus spores were the most resistant pathogen. However, more than 3 log10 reductions were achieved with 120-s EO water treatment.



Journal Cover

Microbe(s): Escherichia coli, Bacillus subtilis


Acidic electrolyzed water (acidic EW), which is prepared by the electrolysis of an aqueous NaCl solution, has recently become of great importance for disinfection in a variety of fields, including medicine, the food industry and agriculture. In a previous paper we showed that: 1) acidic EW is a mixture of hypocholorite ion, hypochlorous acid and chlorine, depending upon the pH; 2) hypochlorous acid is primarily responsible for disinfection in the case of Escherichia coli K12 and Bacillus subtilis PCI219, both in clean culture media. In practice, however, the use of acidic EW is in many cases severely hampered due to the presence of a variety of non-selective reducing agents. In view of the salient nature of acidic EW, it is therefore strongly urged to establish an optimum way to use acidic EW in a variety of systems. The present paper is the first report on our attempt along this line in order to characterize the nature of the chemical changes that the bactericidal activity of the acidic EW deteriorates in the presence of organic materials, which include amino acids and proteins.



Journal Cover

Microbe(s): Total Microbial Count


The main factor contributing to the disinfecting potential of acidic electrolyzed water (AcEW) is deduced to be the oxidizing power of available chlorine. In this study, we compared the reliability of two different methods for measuring the available chlorine concentration (ACC). Several AcEW solutions with different levels of ACC to which various reducing agents (ascorbic acid, ammonium iron (II) sulfate, and iron (II) chloride) had been added were prepared. These ACC levels were quantified by iodometry and the DPD (N, N-diethyl-p-phenylenediamine) method. In the case of AcEW with iron (II) ions, iodometry did not show the correct ACC. On the other hand, the DPD method correctly quantified ACC even in the case of AcEW with iron (II) ions. Thus, the DPD method is an appropriate method for measuring ACC in AcEW. Moreover, we investigated the effect of the available chlorine concentration (ACC) in AcEW on its disinfecting potential. First, we examined the disinfectant effects of AcEW on shredded vegetables. We found that there was no difference in the disinfectant effects between AcEW with high ACC (40ppm) and low ACC (0.4ppm). The similar effect was detected in AcEW with 0ppm of ACC, a solution that seemed to be the same as hydrochloric acid. Moreover, tap water with pH adjusted to 2.4 showed the same disinfectant effect as that of AcEW. These results indicated that AcEW is a solution in which available chlorine is activated in a low pH condition. Next, we examined the disinfectant effects of AcEW on a suspension obtained from shredded vegetables in vitro. The disinfecting potential became weaker, but did not completely disappear, when ACC was reduced to 0ppm. Thus, AcEW with low ACC could be used to disinfect shredded vegetables, although the disinfecting potential of AcEW would become weak. When the effective concentration of Acc was examined, it was found that the AcEW with ACC of less than 20ppm did not have sufficient disinfectant potential. Moreover, it was found that high ORP (above 1000mV) does not contribute to disinfecting potential. Thus, the lower limit of ACC in AcEW for AcEW to exert a sufficient disinfectant effect will be 20ppm.



Journal Cover

Microbe(s): Escherichia coli


Hypochlorous acid (HOCl) is probably the most widely used disinfectant worldwide and has an important role in inflammatory reaction and in human resistance to infection. However, the nature and mechanisms of its bactericidal activity are still poorly understood. Bacteria challenged aerobically with HOCl concentrations ranging from 9.5 to 76 M exhibit higher ability to form colonies anaerobically than aerobically. Conversely, aerobic plating greatly increased lethality after an anaerobic HOCl challenge, although anaerobic survival did not depend on whether HOCl exposure was aerobic or anaerobic. Even a short transient exposure to air after anaerobic HOCl challenge reduced anaerobic survival, indicative of immediate deleterious effects of oxygen. Exposure to HOCl can cause lethal DNA damage as judged by the fact that recA sensitivity to HOCl was oxygen dependent. Antioxidant defenses such as reduced glutathione and glucose-6-phosphate dehydrogenase were depleted or inactivated at 10 M HOCl, while other activities, such as superoxide dismutase, dropped only above 57 M HOCl. Cumulative deficiencies in superoxide dismutase and glucose-6-phosphate dehydrogenase rendered strains hypersensitive to HOCl. This indicates that part of HOCl toxicity on Escherichia coli is mediated by reactive oxygen species during recovery.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Salmonella enteritidis, Listeria monocytogenes


The efficacy of electrolyzed oxidizing water for inactivating. Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes was evaluated. A five-strain mixture of E. coli O157:H7,S. enteritidis, or L. monocytogenes of approximately 108 CFU/ml was inoculated in 9 ml of electrolyzed oxidizing water (treatment) or 9 ml of sterile, deionized water (control) and incubated at 4 or 23 C for 0, 5, 10, and 15 min; at 35 C for 0, 2, 4, and 6 min; or at 45 C for 0, 1, 3, and 5 min. The surviving population of each pathogen at each sampling time was determined on tryptic soy agar. At 4 or 23 C, an exposure time of 5 min reduced the populations of all three pathogens in the treatment samples by approximately 7 log CFU/ml, with complete inactivation by 10 min of exposure. A reduction of 7 log CFU/ml in the levels of the three pathogens occurred in the treatment samples incubated for 1 min at 45 C or for 2 min at 35 C. The bacterial counts of all three pathogens in control samples remained the same throughout the incubation at all four temperatures. Results indicate that electrolyzed oxidizing water may be a useful disinfectant, but appropriate applications need to be validated.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Listeria monocytogenes


One milliliter of culture containing a five-strain mixture of Escherichia coli O157:H7 (1010 CFU) was inoculated on a 100-cm2 area marked on unscarred cutting boards. Following inoculation, the boards were air-dried under a laminar flow hood for 1 h, immersed in 2 liters of electrolyzed oxidizing water or sterile deionized water at 23 C or 35 C for 10 or 20 min; 45 C for 5 or 10 min; or 55 C for 5 min. After each temperature-time combination, the surviving population of the pathogen on cutting boards and in soaking water was determined. Soaking of inoculated cutting boards in electrolyzed oxidizing water reduced E. coli O157:H7 populations by 5.0 log CFU/100 cm2 on cutting boards. However, immersion of cutting boards in deionized water decreased the pathogen count only by 1.0 to 1.5 log CFU/100 cm2. Treatment of cutting boards inoculated with Listeria monocytogenes in electrolyzed oxidizing water at selected temperature-time combinations (23 C for 20 min, 35 C for 10 min, and 45 C for 10 min) substantially reduced the populations of L. monocytogenes in comparison to the counts recovered from the boards immersed in deionized water. E. coli O157:H7 and L. monocytogenes were not detected in electrolyzed oxidizing water after soaking treatment, whereas the pathogens survived in the deionized water used for soaking the cutting boards. This study revealed that immersion of kitchen cutting boards in electrolyzed oxidizing water could be used as an effective method for inactivating foodborne pathogens on smooth, plastic cutting boards.



Journal Cover

Microbe(s): Total Microbial Count


The effect of electrolyzed water on total microbial count was evaluated on several fresh-cut vegetables. When fresh-cut carrots, bell peppers, spinach, Japanese radish, and potatoes were treated with electrolyzed water (pH 6.8, 20 ppm available chlorine) by dipping, rinsing, or dipping/blowing, microbes on all cuts were reduced by 0.6 to 2.6 logs CFU/g. Rinsing or dipping/blowing were more effective than dipping. Electrolyzed water containing 50 ppm available chlorine had a stronger bactericidal effect than that containing 15 or 30 ppm chlorine for fresh-cut carrots, spinach, or cucumber. Electrolyzed water did not affect tissue pH, surface color, or general appearance of fresh-cut vegetables.